This study demonstrates that selective-area Si implantation performed on the GaN templates instead of conventional dielectric layers, such as SiO or SiN, serves as the mask layer for the epitaxial lateral overgrowth (ELOG) process. Although the substantial mask layer is absent on the templates, selective growth initially occurs on the implantation-free area and then evolves a lateral overgrowth on the Si-implanted area during the regrowth process. This selective growth is attributed to that the crystal structure of the Si-implanted area subjected to the high doses of ion bombardment produces an amorphous surface layer, thereby leading to a lattice mismatch to the regrown GaN layer. Microstructural analyses reveal that the density of the threading dislocations above the Si-implanted regions is markedly lower than the GaN layer in the implantation-free regions. Consequentially, UV LEDs fabricated on the Si-implanted GaN templates exhibit relatively higher light output and lower leakage current compared with those of LEDs grown on ELOG-free GaN templates.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.386512 | DOI Listing |
Am J Obstet Gynecol MFM
January 2025
The Josef Buchmann Gynecology and Maternity Center, Sheba Medical Center, Tel Hashomer, Israel; ARC Innovation Center, Sheba Medical Center, Ramat Gan, Israel; Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel; The Dina Recanati School of Medicine, Reichmann University, Herzliya, Israel.
Objective: Machine learning (ML), a subtype of artificial intelligence (AI), presents predictive modeling and dynamic diagnostic tools to facilitate early interventions and improve decision-making. Considering the global challenges of maternal, fetal, and neonatal morbidity and mortality, ML holds the potential to enable significant improvements in maternal and neonatal health outcomes. We aimed to conduct a comprehensive review of ML applications in peripartum care, summarizing the potential of these tools to enhance clinical decision-making and identifying emerging trends and research gaps.
View Article and Find Full Text PDFAdv Mater
January 2025
Department of Materials Science and Metallurgy, University of Cambridge, Cambridge, CB3 0FS, UK.
Thick metamorphic buffers are considered indispensable for III-V semiconductor heteroepitaxy on large lattice and thermal-expansion mismatched silicon substrates. However, III-nitride buffers in conventional GaN-on-Si high electron mobility transistors (HEMT) impose a substantial thermal resistance, deteriorating device efficiency and lifetime by throttling heat extraction. To circumvent this, a systematic methodology for the direct growth of GaN after the AlN nucleation layer on six-inch silicon substrates is demonstrated using metal-organic vapor phase epitaxy (MOVPE).
View Article and Find Full Text PDFiScience
January 2025
Division of Optometry, Health Sciences, City University of London, London EC1V 0HB, UK.
A key property of our environment is the mirror symmetry of many objects, although symmetry is an abstract global property with no definable shape template, making symmetry identification a challenge for standard template-matching algorithms. We therefore ask whether Deep Neural Networks (DNNs) trained on typical natural environmental images develop a selectivity for symmetry similar to that of the human brain. We tested a DNN trained on such typical natural images with object-free random-dot images of 1, 2, and 4 symmetry axes.
View Article and Find Full Text PDFPhys Med Biol
January 2025
Radiation Oncology, University of California San Francisco, 1600 Divisadero St, San Francisco, California, 94143, UNITED STATES.
Lung tumors can be obscured in X-rays, preventing accurate and robust localization. To improve lung conspicuity for image-guided procedures, we isolate the lungs in the anterior-posterior (AP) X-rays using a lung extraction network (LeX-net) that virtually removes overlapping thoracic structures, including ribs, diaphragm, liver, heart, and trachea. Approach: 73,965 thoracic 3DCTs and 106 thoracic 4DCTs were included.
View Article and Find Full Text PDFSmall Methods
December 2024
Nanchang Key Laboratory of Photoelectric Conversion and Energy Storage Materials, College of Science, Nanchang Institute of Technology, Nanchang, 330099, P. R. China.
Constructing a hollow structure inside zeolite is very helpful for improving its performance. Unlike the conventional alkaline etching technique usually operated at high temperature (typically 170 °C) and high pressure (autogenerated in autoclave), here, it is discovered that zeolite MFI nano-box can be achieved under mild etching conditions of atmospheric pressure and low temperature of 80 °C, making it very attractive for energy conservation and practical applications. A hollow-structure formation mechanism of protection-dissolution etching is demonstrated by characterizing MFI crystals obtained under different etching time, temperature, and etchant concentration.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!