A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

MuPeG-The Multiple Person Gait Framework. | LitMetric

MuPeG-The Multiple Person Gait Framework.

Sensors (Basel)

Department of Computer Architecture, University of Málaga, 29071 Málaga, Spain.

Published: March 2020

Gait recognition is being employed as an effective approach to identify people without requiring subject collaboration. Nowadays, developed techniques for this task are obtaining high performance on current datasets (usually more than 90 % of accuracy). However, those datasets are simple as they only contain one subject in the scene at the same time. This fact limits the extrapolation of the results to real world conditions where, usually, multiple subjects are simultaneously present at the scene, generating different types of occlusions and requiring better tracking methods and models trained to deal with those situations. Thus, with the aim of evaluating more realistic and challenging situations appearing in scenarios with multiple subjects, we release a new framework (MuPeG) that generates augmented datasets with multiple subjects using existing datasets as input. By this way, it is not necessary to record and label new videos, since it is automatically done by our framework. In addition, based on the use of datasets generated by our framework, we propose an experimental methodology that describes how to use datasets with multiple subjects and the recommended experiments that are necessary to perform. Moreover, we release the first experimental results using datasets with multiple subjects. In our case, we use an augmented version of TUM-GAID and CASIA-B datasets obtained with our framework. In these augmented datasets the obtained accuracies are 54 . 8 % and 42 . 3 % whereas in the original datasets (single subject), the same model achieved 99 . 7 % and 98 . 0 % for TUM-GAID and CASIA-B, respectively. The performance drop shows clearly that the difficulty of datasets with multiple subjects in the scene is much higher than the ones reported in the literature for a single subject. Thus, our proposed framework is able to generate useful datasets with multiple subjects which are more similar to real life situations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7085678PMC
http://dx.doi.org/10.3390/s20051358DOI Listing

Publication Analysis

Top Keywords

multiple subjects
28
datasets multiple
20
datasets
12
augmented datasets
8
tum-gaid casia-b
8
single subject
8
multiple
7
subjects
7
framework
6
mupeg-the multiple
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!