Despite the high burden of vector-borne disease in (sub)tropical areas, few information are available regarding the diversity of tick and tick-borne pathogens circulating in the Caribbean. Management and control of vector-borne disease require actual epidemiological data to better assess and anticipate the risk of (re)emergence of tick-borne diseases in the region. To simplify and reduce the costs of such large-scale surveys, we implemented a high-throughput microfluidic real-time PCR system suitable for the screening of the main bacterial and parasitic genera involved in tick-borne disease and potentially circulating in the area. We used the new screening tool to perform an exploratory epidemiological study on 132 adult specimens of and 446 of collected in Guadeloupe and Martinique. Not only the system was able to detect the main pathogens of the area- , , , and -but the system also provided evidence of unsuspected microorganisms in Caribbean ticks, belonging to the , , and genera. Our study demonstrated how high-throughput microfluidic real-time PCR technology can assist large-scale epidemiological studies, providing a rapid overview of tick-borne pathogen and microorganism diversity, and opening up new research perspectives for the epidemiology of tick-borne pathogens.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7157729PMC
http://dx.doi.org/10.3390/pathogens9030176DOI Listing

Publication Analysis

Top Keywords

tick-borne pathogens
12
vector-borne disease
8
high-throughput microfluidic
8
microfluidic real-time
8
real-time pcr
8
tick-borne
6
upscaling surveillance
4
surveillance tick-borne
4
pathogens
4
pathogens french
4

Similar Publications

A review of acaricides and their resistance mechanisms in hard ticks and control alternatives with synergistic agents.

Acta Trop

December 2024

Centro de Investigación en Alimentación y Desarrollo, A. C. (CIAD), 83304 Hermosillo, Sonora, Mexico. Electronic address:

Article Synopsis
  • Ticks are major ectoparasites that spread serious diseases like Lyme disease and Rocky Mountain spotted fever, posing challenges for public health and livestock due to emerging resistance to acaricides.
  • The review discusses how genetic mutations, metabolic processes, and behavior contribute to this resistance, while also highlighting the economic impact estimated at $20 billion in livestock loss annually.
  • It emphasizes the need for new acaricides, innovative control strategies, and regular monitoring to effectively manage tick populations and protect public health and livestock productivity.
View Article and Find Full Text PDF

The first direct detection of spotted fever group Rickettsia spp. diversity in ticks from Ningxia, northwestern China.

PLoS Negl Trop Dis

January 2025

State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, P.R. China.

Background: Tick-borne infectious diseases caused by the spotted fever group Rickettsia (SFGR) have continuously emerging, with many previously unidentified SFGR species reported. The prevalence of SFGRs in northwestern China remains unclear. This study aimed to examine the prevalence of SFGRs and Anaplasma species by analyzing tick samples collected from the Ningxia region.

View Article and Find Full Text PDF

Emerging tick-borne orthonairovirus infections pose a growing global concern, with limited understanding of the viral ovarian tumor-like cysteine proteases (vOTUs) encoded by novel orthonairoviruses. These vOTUs, a group of deubiquinylases (DUBs), disrupt the innate immune response. Yezo virus (YEZV), a recently discovered pathogenic orthonairovirus, was first reported in Japan in 2021.

View Article and Find Full Text PDF

Biological control of ticks using entomopathogenic fungi (EPF) is a highly desired alternative to chemical acaricides for the control of tick-borne pathogens. For Metarhizium anisopliae isolate ICIPE 7, one of these EPFs, efficacy against multiple tick species has been demonstrated in laboratory and field settings. However, we currently have little quantitative understanding of how EPFs can impact transmission.

View Article and Find Full Text PDF

Borrelia miyamotoi disease (BMD), also known as hard-tick relapsing fever, is an emerging tick-borne illness caused by the bacterium Borrelia miyamotoi. This pathogen is transmitted primarily by Ixodes ticks, also known as deer ticks or black-legged ticks. BMD poses significant public health concerns because of its potential to cause severe hemodynamic and hematologic disturbances, particularly in vulnerable populations such as pregnant individuals.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!