Antioxidant and a-amylase Inhibitory Activities and Phytocompounds of Fruits.

Medicines (Basel)

Department of Development Technology, Graduate School for International Development and Cooperation, Hiroshima University, Hiroshima 739-8529, Japan.

Published: February 2020

fruit is commonly used for food ingredients and traditional medicines in tropical countries, however, information about its biological activities and chemical profiles has been inadequately reported. In this study, a bio-guided fractionation of antioxidants and α-amylase inhibitors from hexane (MH) and ethyl acetate (ME) extracts of fruit (pericarp and seed) was carried out. Eleven fractions from MH (D1-D11) and 17 fractions from ME (T1-T17) were obtained from column chromatography over silica gel, which were then examined for anti-radical capacity by 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) assays, and pancreatic α-amylase inhibition, a key enzyme linked to type 2 diabetes. Of isolated fractions, the fraction T4 revealed the most potent anti-DPPH activity (IC = 0.13 mg/mL), whereas T2 exhibits the strongest ABTS cation scavenging ability (IC = 0.31 mg/mL). In the enzymatic assay, the fractions D3 and T4 significantly inhibit the α-amylase reaction with IC values of 0.34 and 0.86 mg/mL, respectively. Remarkably, α-amylase suppression of T4 is close to acarbose and over four times stronger than palmitic acid, which are the well-known α-amylase inhibitors (IC = 0.07 and 1.52 mg/mL, respectively). The active constituents from fractions were identified by gas chromatography-mass spectrometry (GC-MS). The results show that the fraction D3 contains five major compounds, which are grouped in five classes consisting of fatty acids, phenols, benzodioxoles, alcohols, and sesquiterpenes. Among them, palmitic acid is the most dominant compound (32.64%), followed by 2R-acetoxymethyl-1,3,3-trimethyl-4t-(3-methyl-2-buten-1-yl)-1t-cyclohexanol (16.69%). Whilst, six major compounds belonging to fatty acid and coumarin classes are identified in the fraction T4. The most abundant compound in T4 is dentatin (47.32%), followed by palmitic acid (15.11%). This is the first finding that fruit can be a promising source for the development of natural antioxidant and antidiabetic agents. Additionally, the outcome reveals that dentatin, a known natural antineoplastic agent, can be feasibly exploited from fruit.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7151626PMC
http://dx.doi.org/10.3390/medicines7030010DOI Listing

Publication Analysis

Top Keywords

palmitic acid
12
α-amylase inhibitors
8
major compounds
8
α-amylase
5
fractions
5
acid
5
antioxidant a-amylase
4
a-amylase inhibitory
4
inhibitory activities
4
activities phytocompounds
4

Similar Publications

Background: Diabetes mellitus is associated with morphological and functional impairment of the heart primarily due to lipid toxicity caused by increased fatty acid metabolism. Extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) have been implicated in the metabolism of fatty acids in the liver and skeletal muscles. However, their role in the heart in diabetes remains unclear.

View Article and Find Full Text PDF

Chemical Characterization and Differential Lipid-Modulating Effects of Selected Plant Extracts from Côa Valley (Portugal) in a Cell Model for Liver Steatosis.

Pharmaceuticals (Basel)

January 2025

Clinic Academic Center of Coimbra (CACC), Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, 3000-548 Coimbra, Portugal.

Background/objectives: Côa Valley, located in the northeast of Portugal, harbors more than 500 medicinal plant species. Among them, four species stand out due to their traditional uses: Desf. (hemorrhages, urethritis, hepatitis), L.

View Article and Find Full Text PDF

Fatty Acid Esters of Hydroxy Fatty Acids (FAHFAs) have emerged as extraordinary bioactive lipids, exhibiting diverse bioactivities, from the enhancement of insulin secretion and the optimization of blood glucose absorption to anti-inflammatory effects. The intricate nature of FAHFAs' structure reflects a synthetic challenge that requires the strategic introduction of ester bonds along the hydroxy fatty acid chain. Our research seeks to create an effective methodology for generating varied FAHFA derivatives.

View Article and Find Full Text PDF

Protection Strategies Against Palmitic Acid-Induced Lipotoxicity in Metabolic Syndrome and Related Diseases.

Int J Mol Sci

January 2025

Departamento de Biomedicina Cardiovascular, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico.

Diets rich in carbohydrate and saturated fat contents, when combined with a sedentary lifestyle, contribute to the development of obesity and metabolic syndrome (MetS), which subsequently increase palmitic acid (PA) levels. At high concentrations, PA induces lipotoxicity through several mechanisms involving endoplasmic reticulum (ER) stress, mitochondrial dysfunction, inflammation and cell death. Nevertheless, there are endogenous strategies to mitigate PA-induced lipotoxicity through its unsaturation and elongation and its channeling and storage in lipid droplets (LDs), which plays a crucial role in sequestering oxidized lipids, thereby reducing oxidative damage to lipid membranes.

View Article and Find Full Text PDF

Obesity is characterized by the enlargement of adipose tissue due to an increased calorie intake exceeding the body's energy expenditure. Changes in the size of adipose tissue can lead to harmful consequences, with excessive fat accumulation resulting in adipocyte hypertrophy and promoting metabolic dysfunction. These adiposity-associated pathologies can be influenced by dietary components and their potential health benefits.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!