Acquisition of Avian-Origin PB1 Facilitates Viral RNA Synthesis by the 2009 Pandemic H1N1 Virus Polymerase.

Viruses

Vaccine and Infectious Disease Organization - International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada.

Published: February 2020

The constant crosstalk between the large avian reservoir of influenza A viruses (IAV) and its mammalian hosts drives viral evolution and facilitates their host switching. Direct adaptation of an avian strain to human or reassortment between avian-origin gene segments with that of human strains are the two mechanisms for the emergence of pandemic viruses. While it was suggested that the 1918 pandemic virus is of avian origin, reassortment of 1918 human isolates and avian influenza viruses led to the generation of 1957 and 1968 pandemic viruses. Interestingly, the avian PB1 segment, which encodes the catalytic subunit of IAV polymerase, is present in the 1957 and 1968 pandemic viruses. The biological consequence and molecular basis of such gene exchange remain less well understood. Using the 2009 pandemic H1N1 virus as a model, whose polymerase contains a human-origin PB1 subunit, we demonstrate that the acquisition of an avian PB1 markedly enhances viral RNA synthesis. This enhancement is also effective in the absence of PB2 adaptive mutations, which are key determinants of host switching. Mechanistically, the avian-origin PB1 does not appear to affect polymerase assembly but imparts the reassorted pandemic polymerase-augmented viral primary transcription and replication. Moreover, compared to the parental pandemic polymerase, the reassorted polymerase displays comparable complementary RNA (cRNA)-stabilizing activity but is specifically enhanced in progeny viral RNA (vRNA) synthesis from cRNA in a trans-activating manner. Overall, our results provide the first insight into the mechanism via which avian-origin PB1 enhances viral RNA synthesis of the 2009 pandemic virus polymerase.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7150768PMC
http://dx.doi.org/10.3390/v12030266DOI Listing

Publication Analysis

Top Keywords

viral rna
16
avian-origin pb1
12
rna synthesis
12
2009 pandemic
12
pandemic viruses
12
pandemic
9
synthesis 2009
8
pandemic h1n1
8
h1n1 virus
8
virus polymerase
8

Similar Publications

Circular RNAs in the pathogenesis of SARS-CoV-2: potential diagnostic biomarkers and therapeutic targets.

Funct Integr Genomics

January 2025

Department of Clinical Laboratory, the Fourth Affiliated Hospital of School of medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China.

Since December 2019, the global dissemination of a novel coronavirus has precipitated a notable public health crisis, prompting considerable interest and scrutiny from governmental and scholarly entities. Substantial research efforts have been dedicated to exploring diverse facets of this novel coronavirus, encompassing its pathogenesis, transmission dynamics, and therapeutic interventions. Recent findings suggest that circular RNAs (circRNAs) exert a pivotal influence on modulating viral infectivity and immune defense mechanisms.

View Article and Find Full Text PDF

Introduction: In genetically predisposed individuals, exposure to aeroallergens and infections from RNA viruses shape epithelial barrier function, leading to Allergic Asthma (AA). Here, activated pattern recognition receptors (PRRs) in lower airway sentinel cells signal epithelial injury-repair pathways leading to cell-state changes [epithelial mesenchymal plasticity (EMP)], barrier disruption and sensitization.

Areas Covered: 1.

View Article and Find Full Text PDF

Chikungunya virus (CHIKV), an enveloped positive-sense RNA virus, is a member of the alphaviruses and cause fever and arthralgia in humans. We performed genome-wide CRISPR/Cas9-based screens and identified Y-box binding protein 1 (YBX1) as an essential cellular factor for CHIKV. Deficiency of YBX1 inhibited CHIKV RNA replication and impaired virus production.

View Article and Find Full Text PDF

Unlabelled: Respiratory epithelial cells can survive direct infection by influenza viruses, and the long-term consequences of that infection have been characterized in a subset of proximal airway cell types. The impact on the cells that survive viral infection in the distal lung epithelia, however, is much less well-characterized. Utilizing a Cre-expressing influenza B virus (IBV) and a lox-stop-lox tdTomato reporter mouse model, we identified that alveolar type 2 (AT2) pneumocytes, a progenitor cell type in the distal lung, can survive viral infection.

View Article and Find Full Text PDF

mRNA-LNP vaccines combined with tPA signal sequence elicit strong protective immunity against .

mSphere

December 2024

Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, School of Pharmacy, Chengdu University, Chengdu, China.

is a prominent Gram-negative and encapsulated opportunistic pathogen that causes a multitude of infections such as severe respiratory and healthcare-associated infections. Despite the widespread anti-microbial resistance and the high mortality rate, currently, no clinically vaccine is approved for battling . To date, messenger RNA (mRNA) vaccine is one of the most advancing technologies and are extensively investigated for viral infection, while infrequently applied for prevention of bacterial infections.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!