The dog population of Southern East Asia is unique in harboring virtually the full range of the universal mtDNA gene pool, and consequently, it has the highest genetic diversity worldwide. Despite this, limited research has been performed on dog genetics within this region. Here we present the first comprehensive study of a sub-region within Southern East Asia, analyzing 528bp of mtDNA for 265 dogs from Thailand, in the context of dogs from across the Old World. We found that Thailand was the only region in the world that has the full range of the universal mtDNA gene pool, that is, all 10 sub-haplogroups. Consequently, the statistics for diversity are among the highest, especially in North Thailand, which had high values for haplotype diversity and the number of haplotypes, and the lowest proportion of individuals with a universal type-derived haplotype (UTd) among all regions. As previously observed, genetic diversity is distinctly lower outside Southern East Asia and it decreases following a cline to the lowest values in western Eurasia. Thus, the limited geographical region of Thailand harbors a distinctly higher genetic diversity than much larger regions in western Eurasia, for example, Southwest Asia and Europe which have only five and four of the 10 sub-haplogroups, respectively. Within Thailand, diversity statistics for all four sub-regions follow the general pattern of Southern East Asia, but North Thailand stands out with its high diversity compared to the other regions. These results show that a small part of Southern East Asia harbors the full range of the mtDNA gene pool, and they emphasize the exceptional genetic status of Southern East Asia. This indicates that today's dogs can trace a major part of their ancestry to Southern East Asia or closely situated regions, highlighting Thailand as a region of special interest. Considering the large genetic diversity found in Thailand and that many neighboring regions, e.g., Myanmar and Laos, have not been studied for dog genetics, it is possible that large parts of the dog gene pool remain undiscovered. It will be an important task for future studies to fill in these blanks on the phylogeographic map.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7140826PMC
http://dx.doi.org/10.3390/genes11030253DOI Listing

Publication Analysis

Top Keywords

southern east
28
east asia
28
gene pool
20
genetic diversity
20
mtdna gene
16
range universal
12
universal mtdna
12
full range
12
diversity
9
dog population
8

Similar Publications

High-energy nuclear collisions create a quark-gluon plasma, whose initial condition and subsequent expansion vary from event to event, impacting the distribution of the eventwise average transverse momentum [P([p_{T}])]. Disentangling the contributions from fluctuations in the nuclear overlap size (geometrical component) and other sources at a fixed size (intrinsic component) remains a challenge. This problem is addressed by measuring the mean, variance, and skewness of P([p_{T}]) in ^{208}Pb+^{208}Pb and ^{129}Xe+^{129}Xe collisions at sqrt[s_{NN}]=5.

View Article and Find Full Text PDF

Background: The ε4 allele of the apolipoprotein E (APOE) gene is the strongest genetic determinant for Alzheimer's disease and cognitive function in nearly all human populations, yet inconsistent effects have been reported in South Asians. The population of India has admixed genetic ancestry with most people falling on a North/South cline and having varying proportions of Ancestral North Indian (ANI) and Ancestral South Indian (ASI) ancestries, and those in east of India fall off the cline due to ancestry from additional ancestral populations. This study examined the ε4 association with cognitive function across 18 states/union territories of India and investigated whether ancestral background modulates ε4 association with cognitive function in 2,590 participants from the Longitudinal Aging Study in India - Diagnostic Assessment of Dementia (LASI-DAD).

View Article and Find Full Text PDF

The transcriptional repressor HEY2 regulates mitochondrial oxidative respiration to maintain cardiac homeostasis.

Nat Commun

January 2025

Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China.

Energy deprivation and metabolic rewiring of cardiomyocytes are widely recognized hallmarks of heart failure. Here, we report that HEY2 (a Hairy/Enhancer-of-split-related transcriptional repressor) is upregulated in hearts of patients with dilated cardiomyopathy. Induced Hey2 expression in zebrafish hearts or mammalian cardiomyocytes impairs mitochondrial respiration, accompanied by elevated ROS, resulting in cardiomyocyte apoptosis and heart failure.

View Article and Find Full Text PDF

The STAT3 pathway promotes epithelial-mesenchymal transition, migration, invasion and metastasis in cancer. STAT3 upregulates the transcription of the key epithelial-mesenchymal transition transcription factor SNAIL in a DNA binding-independent manner. However, the mechanism by which STAT3 is recruited to the SNAIL promoter to upregulate its expression is still elusive.

View Article and Find Full Text PDF

A Couple-Based Intervention for Chinese Older Adults With Type 2 Diabetes: A Randomized Clinical Trial.

JAMA Netw Open

January 2025

Department of Medical Statistics and Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China.

Importance: Spousal involvement in diabetes care is recommended theoretically, but effectiveness in clinical settings and among diverse populations is unclear.

Objective: To test the effect of a couple-based intervention among Chinese older patients with type 2 diabetes and their spouses.

Design, Setting, And Participants: This multicenter randomized clinical trial comprised 2 arms: a couple-based intervention arm and an individual-based control.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!