The cardiac expression of the mitochondrial uncoupling protein (UCP)-2 is increased in patients with heart failure. However, the underlying causes as well as the possible consequences of these alterations during the transition from hypertrophy to heart failure are still unclear. To investigate the role of UCP-2 mechanistically, expression of UCP-2 was silenced by small interfering RNA in adult rat ventricular cardiomyocytes. We demonstrate that a downregulation of UCP-2 by siRNA in cardiomyocytes preserves contractile function in the presence of angiotensin II. Furthermore, silencing of UCP-2 was associated with an upregulation of glucose transporter type (Glut)-4, increased glucose uptake, and reduced intracellular lactate levels, indicating improvement of the oxidative glucose metabolism. To study this adaptation in vivo, spontaneously hypertensive rats served as a model for cardiac hypertrophy due to pressure overload. During compensatory hypertrophy, we found low UCP-2 levels with an upregulation of Glut-4, while the decompensatory state with impaired function was associated with an increase of UCP-2 and reduced Glut-4 expression. By blocking the aldosterone receptor with spironolactone, both cardiac function as well as UCP-2 and Glut-4 expression levels of the compensated phase could be preserved. Furthermore, we were able to confirm this by left ventricular (LV) biopsies of patients with end-stage heart failure. The results of this study show that UCP-2 seems to impact the cardiac glucose metabolism during the transition from hypertrophy to failure by affecting glucose uptake through Glut-4. We suggest that the failing heart could benefit from low UCP-2 levels by improving the efficiency of glucose oxidation. For this reason, UCP-2 inhibition might be a promising therapeutic strategy to prevent the development of heart failure.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7140436 | PMC |
http://dx.doi.org/10.3390/cells9030552 | DOI Listing |
Lipids Health Dis
January 2025
Department of Cardiology, West China Hospital, Sichuan University West China School of Medicine, 37 Guoxue Road, Chengdu, Sichuan, 610041, China.
Background: Atrial fibrillation (AF) is the most prevalent arrhythmia encountered in clinical practice. Triglyceride glucose index (Tyg), a convenient evaluation variable for insulin resistance, has shown associations with adverse cardiovascular outcomes. However, studies on the Tyg index's predictive value for adverse prognosis in patients with AF without diabetes are lacking.
View Article and Find Full Text PDFBMC Prim Care
January 2025
Division of Family Medicine and Primary Care, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Huddinge, Sweden.
Aims: To study differences in cardiovascular prevention and hypertension management in primary care in men and women, with comparisons between public and privately operated primary health care (PHC).
Methods: We used register data from Region Stockholm on collected prescribed medication and registered diagnoses, to identify patients aged 30 years and above with hypertension. Age-adjusted logistic regression was used to calculate odds ratios (ORs) with 99% confidence intervals (99% CIs) using public PHC centers as referents.
Int J Obes (Lond)
January 2025
Department of Cardiology, Sakakibara Heart Institute, Tokyo, Japan.
Background: Obesity is a risk factor for heart failure (HF) development but is associated with a lower incidence of mortality in HF patients. This obesity paradox may be confounded by unrecognized comorbidities, including cachexia.
Methods: A retrospective assessment was conducted using data from a prospectively recruiting multicenter registry, which included consecutive acute heart failure patients.
J Cardiovasc Transl Res
January 2025
Cardiac Regeneration and Ageing Lab, Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, 226011, China.
HFpEF is a prevalent and complex type of heart failure. The concurrent presence of conditions such as obesity, hypertension, hyperglycemia, and hyperlipidemia significantly increase the risk of developing HFpEF. Mitochondria, often referred to as the powerhouses of the cell, are crucial in maintaining cellular functions, including ATP production, intracellular Ca regulation, reactive oxygen species generation and clearance, and the regulation of apoptosis.
View Article and Find Full Text PDFChin Med J (Engl)
January 2025
Department of Cardiovascular Surgery, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!