Purpose: Accumulation of amyloid beta (Aβ) is thought to be the major cause of the development and progression of Alzheimer's disease (AD). The aim of this study is to elucidate the effects of Aβ at increasing concentrations on auditory evoked potentials (AEPs) and to determine possible changes relevant to the accumulation of Aβ.
Materials And Methods: In this study, rats were randomized to following groups (n = 10 per group): sham (0.9% NaCl), Aβ-1 (1 μg/μl), Aβ-2 (2 μg/μl), Aβ-3 (3 μg/μl), Aβ-4 (4 μg/μl), Aβ-5 (6 μg/μl), Aβ-6 (8 μg/μl) and Aβ-7 (10 μg/μl) groups obtained by injection of 5 μl per ventricle. Then, AEPs were recorded in freely-moving rats. Latencies and amplitudes of AEPs, evoked power, inter-trial phase synchronization, and auditory evoked gamma responses were obtained in response to auditory stimulus. Furthermore, Aβ levels were determined in the temporal cortex.
Results: Aβ levels were significantly higher in the temporal cortex in Aβ groups compared to the sham. In frontal and parietal regions, P1N1 amplitudes were significantly decreased in Aβ-3, 4, 5 and 6 groups, and N1P2 amplitudes were significantly decreased in all Aβ groups, whereas in temporal regions, P1N1 and N1P2 amplitudes were decreased in Aβ-2,3,4,5,6 and 7 compared to the sham. In the evoked gamma power and phase synchronization of gamma responses, we detected significant decrease after Aβ-4 group, whereas a significant decrease in the filtered gamma responses was observed in Aβ groups compared to the sham.
Conclusions: AEPs might be used as a biomarker to determine the Aβ related neuronal degeneration in the auditory networks.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.advms.2020.02.001 | DOI Listing |
Int J Mol Sci
January 2025
Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Inha University, Incheon 22332, Republic of Korea.
Gravitational changes have been shown to cause significant abnormalities in various body systems, including the cardiovascular, immune, vestibular, and musculoskeletal systems. While numerous studies have examined the response of the vestibular system to gravitational stimulation, research on functional changes in the peripheral inner ear remains limited. The inner ear comprises two closely related structures: the vestibule and cochlea.
View Article and Find Full Text PDFEur J Neurosci
January 2025
Department of Psychology, University of Lübeck, Lübeck, Germany.
Distraction is ubiquitous in human environments. Distracting input is often predictable, but we do not understand when or how humans can exploit this predictability. Here, we ask whether predictable distractors are able to reduce uncertainty in updating the internal predictive model.
View Article and Find Full Text PDFBrain Sci
January 2025
Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Zurich, University of Zurich, 8006 Zurich, Switzerland.
The brainstem auditory-evoked response (BAER) is an established electrophysiological measure of neural activity from the auditory nerve up to the brain stem. The BAER is used to diagnose abnormalities in auditory pathways and in neurophysiological human and animal research. However, normative data for BAERs in sheep, which represent an adequate large animal model for translational and basic otological research, are lacking.
View Article and Find Full Text PDFBrain Sci
December 2024
Neuroscience Center Zurich, University and ETH Zurich, CH-8091 Zurich, Switzerland.
Background/objectives: The auditory middle-latency responses (AMLRs) assess central sensory processing beyond the brainstem and serve as a measure of sensory gating. They have clinical relevance in the diagnosis of neurological conditions. In this study, magnitude and habituation of the AMLRs were tested for sensitivity and specificity in classifying dizzy patients with vestibular migraine (VM) and post-concussive syndrome.
View Article and Find Full Text PDFEar Hear
January 2025
Department of Otorhinolaryngology and Head and Neck Surgery, Erasmus Medical Center, University Medical Center, Rotterdam, The Netherlands.
Objectives: The acoustic change complex (ACC) is a cortical auditory evoked potential that shows promise as an objective test of the neural capacity for speech and sound discrimination, particularly for difficult-to-test populations, for example, cognitively impaired adults. There is uncertainty, however, surrounding the performance of the ACC with behavioral measures. The objective of this study was to systematically review the literature, focusing on adult studies, to investigate the relationship between ACC responses and behavioral psychophysical measures.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!