Uniformly dispersed silver nanoparticles (AgNPs) with remarkable colloidal stability were synthesised using chemical reduction method in lipopeptide biosurfactant reverse micelles. Transmission Electron microscopy (TEM), Scanning electron microscopy (SEM) and UV-vis spectroscopy analysis exhibited monodisperse nanoparticles with spherical morphology of diameter of 21 ± 2. The lipopeptide stabilized AgNPs displayed remarkable antibacterial activity with minimum inhibitory concentration (MIC) value of 15.625 μg/mL against Gram-negative Pseudomonas aeruginosa CB1 and Gram-positive Bacillus subtilis CN2 strains with a significant dose-dependent reduction of cell viability and loss of membrane integrity. Investigation of AgNPs internalization and dissolution assays demonstrated 42-fold higher leaching of the lipopeptide-stabilized AgNPs compared to the bare AgNPs, and concentration dependent increase in cellular uptake with subsequent damage to intracellular organelles. Further ultrastructural observation using TEM revealed internalization and strong binding of considerable amount of AgNPs on the lipopolysaccharide layer of the Gram-negative and peptidoglycans layer of Gram-positive bacteria indiscriminately, demonstrating robust antibacterial activity and potential application to treat multidrug resistant bacteria.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jhazmat.2020.122319 | DOI Listing |
Int Dent J
December 2024
King Salman Hospital, Ministry of Health, Riyadh, Saudi Arabia.
Introduction And Aims: Dental practices pose a high risk of microbial contamination due to frequent exposure to bodily fluids like saliva and blood. Bioengineering innovations have emerged as vital tools to enhance infection control in dental settings. This review aims to assess the global applications and effectiveness of these innovations, particularly focusing on antimicrobial biomaterials, sterilization techniques, and personal protective equipment (PPE).
View Article and Find Full Text PDFMikrochim Acta
December 2024
State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China.
An electrochemiluminescence (ECL) immunosensor was developed for the highly sensitive and specific detection of heart-type fatty acid binding protein (H-FABP) and the rapid diagnosis of acute myocardial infarction (AMI). H-FABP is a biomarker that is highly specific to cardiac tissue and is associated with a range of cardiac diseases. Following myocardial injury, the rate of increase in H-FABP levels is greater than that observed for myoglobin and troponin.
View Article and Find Full Text PDFWaste Manag
December 2024
College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China.
With the exponential growth of global photovoltaic (PV) installed capacity, the quantity of discarded PV modules continues to rise. This study innovatively explored the sustainable recovery and utilization of raw materials from discarded solar panels, focusing on the transformation of recycled silicon into microporous silica nanoparticles (MSN). Low toxic organic solvent ethyl acetate (EA) was for the first time utilized to reduce the viscosity of ethylene-vinyl acetate (EVA) and facilitated its removal.
View Article and Find Full Text PDFACS Nano
December 2024
School of Environment, Beijing Normal University, 19 Xinjiekouwai Street, Haidian District, Beijing 100875, China.
The rapid spread of antimicrobial resistance poses a critical threat to global health and the environment. Antimicrobial nanomaterials, including silver nanoparticles (AgNPs), are being explored as innovative solutions; however, the emergence of nanoresistance challenges their effectiveness. Understanding resistance mechanisms is essential for developing antievolutionary strategies.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Theoretical Electrical Engineering and Diagnostics of Electrical Equipment, Institute of Electrodynamics, National Academy of Sciences of Ukraine, Beresteyskiy, 56, Kyiv-57, 03680, Ukraine.
An energy material has been developed using a one-step chemical reduction method, incorporating silver nanoparticles (AgNPs) that encapsulate micro-sized silicon (mSi) flakes. SEM investigation revealed complete encapsulation of silicon flakes by AgNP's dendritic structure, EDX confirmed the deposition of Ag on Si flakes. Raman spectroscopy confirmed the formation of silver and silicon oxides.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!