The current scenario of water resources shows the dominance of pollution caused by the draining of industrial effluents. The polluted waters have resulted in severe health and environmental hazards urging for a suitable alternative to resolve the implications. Various physical and chemical treatment steps currently in use for dye effluent treatment are more time consuming, cost-intensive, and less effective. Alternatively, nanoparticles due to their excellent surface properties and chemical reactivity have emerged as a better solution for dye removal and degradation. In this regard, the potential of silver nanoparticles in dye effluent treatment was greatly explored. Efforts were taken to unravel the kinetics and statistical optimization of the treatment conditions for the efficient removal of dyes. In addition, the role of silver nanocomposites has also experimented with colossal success. On the contrary, studies have also recognized the mechanisms of silver nanoparticle-mediated toxicity even at deficient concentrations and their deleterious biological effects when present in treated water. Hence, the fate of the silver nanoparticles released into the treated water and sludge, contaminating the soil, aquatic environment, and underground water is of significant concern. This review summarizes the current state of knowledge regarding the use of silver nanoparticles and silver-based nanocomposites in effluent treatment and comprehends the recent research on mitigation of silver nanoparticle-induced toxicity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jphotobiol.2020.111823 | DOI Listing |
Sci Rep
January 2025
Department of Chemistry, Devchand College, Arjunnagar, Kolhapur, MH, 591237, India.
Acoustical properties are essential for understanding the molecular interactions in fluids, as they influence the physicochemical behavior of liquids and determine their suitability for diverse applications. This study investigated the acoustical parameters of silver nanoparticles (Ag NPs), reduced graphene oxide (rGO), and Ag/rGO nanocomposite nanofluids at varying concentrations. Ag NPs and Ag/rGO nanocomposites were synthesized via a Bos taurus indicus (BTI) metabolic waste-assisted method and characterized using advanced techniques, including XRD, TEM, Raman, DLS, zeta potential, and XPS.
View Article and Find Full Text PDFAnal Chim Acta
February 2025
The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, No. 28 Xianning West Road, Xi'an, 710049, China. Electronic address:
Background: Plasmonic core-shell nanostructures with embedded internal markers used as Raman probes have attracted great attention in surface-enhanced Raman scattering (SERS) immunoassay for cancer biomarkers due to their excellent uniform enhancement. However, current core-shell nanostructures typically exhibit a spherical shape and are coated with a gold shell, resulting in constrained local field enhancement.
Results: In this work, we prepared a core-shell AuNR@BDT@Ag structure by depositing silver on the surface of Raman reporter-modified gold nanorods (AuNR).
Int J Biol Macromol
January 2025
School of Textiles and Clothing, Yancheng Institute of Technology, Yancheng, Jiangsu 224051, China. Electronic address:
The electrical conductivity and antibacterial properties are crucial characteristics for bacterial cellulose (BC) based membranes to be broadly applied in the field of wearable electronics. In the study, to achieve these aims, alpha-lipoic acid (LA) was utilized as anchoring groups and reducing agent, hydroxypropyl-β-cyclodextrin (HP-β-CD) capped magnetic particles (FeO NPs) and the in-situ formed silver nanoparticles (AgNPs) were sequentially incorporated into the BC matrix to fabricate BC based nanocomposite membranes (HP-β-CD/FeO/LA@BC and HP-β-CD/FeO/LA/Ag@BC). Fourier transform attenuated total reflectance infrared spectroscopy (FTIR-ATR) and field emission scanning electron microscopy (FE-SEM) analysis proved the dense networks were formed in the modified BC membranes.
View Article and Find Full Text PDFThis study aimed to develop novel hydrogels using polycaprolactone (PCL), nano-silver (Ag), and linalool (Lin) to address the challenge of increasing antimicrobial resistance in healing infected wounds. The hydrogels' morphological properties, in vitro release profiles, antibacterial efficacy, and safety were investigated. Hydrogels were prepared from PCL/Ag, PCL/Lin, and PCL/Ag/Lin formulations and applied to infected wounds.
View Article and Find Full Text PDFPlant Physiol Biochem
January 2025
Department of Plantation Products, Spices & Flavour Technology, CSIR-Central Food Technological Research Institute, Mysuru, 570020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India. Electronic address:
This study investigates the effects of silver nanoparticles (Ag NPs), biogenic silver nanoparticles derived from Rhizopus spp. (R.Ag NPs), and Rhizopus (R) elicitors on the yield and bioactive compounds of turmeric (Curcuma longa) using foliar spray and rhizome dipping techniques.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!