A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 143

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 994
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3134
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Arsenic concentrations, diversity and co-occurrence patterns of bacterial and fungal communities in the feces of mice under sub-chronic arsenic exposure through food. | LitMetric

AI Article Synopsis

  • Arsenic is a harmful pollutant that can accumulate in rice, with existing research mainly focusing on its effects from drinking water rather than food-related exposure and its impact on gut microbes.
  • In an experiment, mice were fed with arsenic-contaminated feed over 30 and 60 days, with analyses done on arsenic levels in their urine and feces, as well as microbial DNA from their feces.
  • The study found significant differences in the distribution of arsenic species in urine and feces over time, with clear changes in gut bacteria diversity linked to arsenic exposure, suggesting potential implications for metabolism and related diseases.

Article Abstract

Background: Arsenic, a global pollutant and a threshold-free primary carcinogen, can accumulate in rice. Previous studies have focused on arsenic poisoning in drinking water and the effects on gut microbes. The research on arseniasis through food, which involves the bio-transformation of arsenic, and the related changes in gut microbiome is insufficient.

Method: Mice were exposed from animal feed prepared with four arsenic species (iAs, iAs, MMA, and DMA) at a dose of 30 mg/kg according to the arsenic species proportion in rice for 30 days and 60 days. The levels of total arsenic (tAs) and arsenic species in mice feces and urine samples were determined using ICP-MS and HPLC-ICP-MS, respectively. 16S rRNA and ITS gene sequencing were conducted on microbial DNA extracted from the feces samples.

Results: At 30 days and 60 days exposure, the tAs levels excreted from urine were 0.0092 and 0.0093 mg/day, and tAs levels in feces were 0.0441 and 0.0409 mg/day, respectively. We found significant differences in arsenic species distribution in urine and feces (p < 0.05). In urine, the predominant arsenic species were iAs (23% and 14%, respectively), DMA (55% and 70%, respectively), and uAs (unknown arsenic, 14% and 10%, respectively). In feces, the proportion of major arsenic species (iAs, 26% and 21%; iAs, 16% and 15%; MMA, 14% and 14%; DMA, 19% and 19%; and uAs, 22% and 29%, respectively) were evenly distributed. Microbiological analysis (MRPP test, α- and β-diversities) showed that diversity of gut bacteria was significantly related to arsenic exposure through food, but diversity of gut fungi is less affected. Manhattan plot and LEfSe analysis showed that arsenic exposure significantly changes microbial taxa, which might be directly associated with arsenic metabolism and diseases mediated by arsenic exposure, such as Deltaproteobacteria, Polynucleobacter, Saccharomyces, Candida, Amanitaceae, and Fusarium. Network analysis was used to identify the changing hub taxa in feces along with arsenic exposure. Function predicting analysis indicated that arsenic exposure might also significantly increase differential metabolic pathways and would disturb carbohydrates, lipid, and amino acids metabolism of gut bacteria.

Conclusions: The results demonstrate that subchronic arsenic exposure via food significantly changes the gut microbiome, and the toxicity of arsenic in food, especially in staples, should be comprehensively evaluated in terms of the disturbance of microbiome, and feces might be the main pathway through which arsenic from food exposure is excreted and bio-transformed, providing a new insight into the investigation of bio-detoxification for arseniasis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envint.2020.105600DOI Listing

Publication Analysis

Top Keywords

arsenic species
16
arsenic
10
30 days 60 days
8
tas levels
8
feces
5
arsenic concentrations
4
concentrations diversity
4
diversity co-occurrence
4
co-occurrence patterns
4
patterns bacterial
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!