Background: Hutchinson-Gilford progeria syndrome (termed progeria in this Article) is a rare sporadic genetic disorder. One early clinical manifestation of progeria is abnormal skeletal growth, yet this growth has not been fully characterised. We aimed to characterise the skeletal maturation and long-bone growth patterns of patients with the clinical phenotype of progeria.

Methods: For this retrospective study, we reviewed skeletal surveys of patients (aged <20 years) with progeria obtained over a 9·5-year period. Most surveys included radiographs of the hands and long bones (humeri, radii, ulnas, tibias, and fibulas). Bone ages of these patients were estimated by the standards of Greulich and Pyle. Following the established methods for studying long-bone growth, the study cohort was separated into two overlapping age groups: longitudinal bone length measurements were made between physes for the childhood group (aged 12 years or younger) and from the upper margins of the proximal to the lower margin of the distal ossified epiphyses for the adolescent group (aged 10 years or older). Bone age estimates and bone length measurements were plotted against the chronological age of patients and compared with reference standards. Statistical analyses were based on mixed models.

Findings: 85 patients with progeria and 250 skeletal surveys were included in our study. For both sexes, bone age estimates showed a more advanced skeletal maturation rate throughout all chronological ages than the normal rate of 1 (p<0·0001), with the rate of maturation being 1·09 (SE 0·02) for boys and 1·14 (0·02) for girls. Longitudinal long-bone lengths began to deviate from normal standards by age 1-2 years. Growth curves for these long bones plateaued at about half the normal eventual bone length, and the half-life (the time taken to grow to half the eventual bone length) was also about half the time compared with normal standards.

Interpretation: Our study established growth curves that might serve as reference standards for skeletal maturation and long-bone growth of patients with the clinical phenotype of progeria.

Funding: The Progeria Research Foundation, the US National Heart, Lung and Blood Institute, the Dana-Farber Cancer Institute Stop&Shop Pediatric Brain Tumor Program, the US National Center for Research Resources, US National Institutes of Health.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10640888PMC
http://dx.doi.org/10.1016/S2352-4642(20)30023-7DOI Listing

Publication Analysis

Top Keywords

skeletal maturation
8
maturation long-bone
8
long-bone growth
8
growth patterns
8
patterns patients
8
retrospective study
8
skeletal
4
growth
4
progeria
4
patients progeria
4

Similar Publications

Muscle architecture of the medial gastrocnemius during growth.

J Physiol Anthropol

December 2024

Faculty of Sport Management, Department of Sport Management, Shobi University, 1-1-1, Toyoda-cho, Kawagoe, Saitama, 350-1110, Japan.

Background: Muscle architecture is closely related to muscle function. Increased knowledge of growth changes in muscle architecture will provide insights into the development of human movements and sports performance during the growth period. However, it is unclear how the muscle architecture of the medial gastrocnemius (MG) grows.

View Article and Find Full Text PDF

Do machine learning methods solve the main pitfall of linear regression in dental age estimation?

Forensic Sci Int

December 2024

Center of Epidemiology, Biostatistics and Medical Information Technology, Department of Biomedical Sciences and Public Health, Università Politecnica delle Marche, Ancona 60126, Italy.

Introduction: Age estimation is crucial in forensic and anthropological fields. Teeth, are valued for their resilience to environmental factors and their preservation over time, making them essential for age estimation when other skeletal remains deteriorate. Recently, Machine Learning algorithms have been used in age estimation, demonstrating high levels of accuracy.

View Article and Find Full Text PDF

Thymic mimetic cells are molecular hybrids between medullary-thymic-epithelial cells (mTECs) and diverse peripheral cell types. They are involved in eliminating autoreactive T cells and can perform supplementary functions reflective of their peripheral-cell counterparts. Current knowledge about mimetic cells derives largely from mouse models.

View Article and Find Full Text PDF

Assessment of skeletal maturity is a common clinical practice to investigate adolescent growth and endocrine disorders. The distal radius and ulna (DRU) maturity classification is a practical and easy-to-use scheme that was designed for adolescent idiopathic scoliosis clinical management and presents high sensitivity in predicting the growth peak and cessation among adolescents. However, time-consuming and error-prone manual assessment limits DRU in clinical application.

View Article and Find Full Text PDF

Barth syndrome (BTHS) is a rare, infantile-onset, X-linked mitochondriopathy exhibiting a variable presentation of failure to thrive, growth insufficiency, skeletal myopathy, neutropenia, and heart anomalies due to mitochondrial dysfunction secondary to inherited TAFAZZIN transacetylase mutations. Although not reported in BTHS patients, male infertility is observed in several () mouse alleles and in a mutant. Herein, we examined the male infertility phenotype in a BTHS-patient-derived point-mutant knockin mouse () allele that expresses a mutant protein lacking transacetylase activity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!