The objective of the present study was to characterize the rumen bacterial and archaeal communities in dairy cows fed different ratios of maize silage (MS) and grass silage (GS), and place the findings in the context of ruminal fermentation as well as previously reported methane (CH4) emissions. Rumen fluid from 12 rumen cannulated dairy cows was collected after 10 and 17 days of feeding one of four diets, all of which had the same roughage to concentrate ratio of 80:20 based on dry matter (DM). Roughage in the four diets (GS100, GS0, GS67, GS33) consisted of either 1000 g/kg DM GS (GS100), 1000 g/kg DM MS (GS0), or a mixture of both silages in different proportions [667 g/kg DM GS and 333 g/kg DM MS (GS67); 333 g/kg DM GS and 677 g/kg DM MS (GS33)]. Total volatile fatty acid (VFA) concentrations and the molar proportions of the ruminal VFA were not affected by diet. Only the molar proportion of isovalerate was affected by time, being lower on day 17 than on day 10. Bacterial and archaeal concentrations were not affected by diet but increased from day 10 to day 17. The bacterial community composition was affected by diet, time and diet × time, whereas the archaeal community composition was only affected by diet. Several bacterial and archaeal genus level groups were associated with diet, but not with time. Analysis indicated the increased use of hydrogen by succinate and lactate producing bacteria is likely to at least partially explain the previously reported lower CH4 emissions from MS fed dairy cows. Furthermore, time had a significant effect on both bacterial and archaeal concentrations, and also bacterial community composition. This indicates that the rumen microbiota had not stabilized after 10 days of feeding the experimental diets.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7051090PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0229887PLOS

Publication Analysis

Top Keywords

bacterial archaeal
20
dairy cows
12
community composition
12
diet time
12
rumen bacterial
8
archaeal communities
8
grass silage
8
maize silage
8
ch4 emissions
8
days feeding
8

Similar Publications

The soil microbiome plays an important role in wetland ecosystem services and functions. However, the impact of soil hydrological conditions on wetland microorganisms is not well understood. This study investigated the effects of wetted state (WS); wetting-drying state (WDS); and dried state (DS) on the diversity of soil bacteria, fungi, and archaea.

View Article and Find Full Text PDF

Structure Diversity and Properties of Some Bola-like Natural Products.

Mar Drugs

December 2024

G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Pr. 100-let Vladivostoku 159, 690022 Vladivostok, Russia.

In their shapes, molecules of some bipolar metabolites resemble the so-called bola, a hunting weapon of the South American inhabitants, consisting of two heavy balls connected to each other by a long flexible cord. Herein, we discuss the structures and properties of these natural products (bola-like compounds or bolaamphiphiles), containing two polar terminal fragments and a non-polar chain (or chains) between them, from archaea, bacteria, and marine invertebrates. Additional modifications of core compounds of this class, for example, interchain and intrachain cyclization, hydroxylation, methylation, etc.

View Article and Find Full Text PDF

Dynamics and Insights into the Unique Ecological Guild of Fungi in Bacteria-Bioaugmented Anaerobic Digesters.

J Fungi (Basel)

January 2025

Microbiology and Environmental Biotechnology Research Group, Institute for Soil, Climate and Water, Agricultural Research Council, Arcadia, Pretoria 0083, South Africa.

Anaerobic digesters host a variety of microorganisms, and they work together to produce biogas. While bacterial and archaeal communities have been well explored using molecular techniques, fungal community structures remain relatively understudied. The present study aims to investigate the dynamics and potential ecological functions of the predominant fungi in bacteria-bioaugmented anaerobic digesters.

View Article and Find Full Text PDF

The coexistence of different microbial communities is fundamental to the sustainability of many ecosystems, yet our understanding of the relationships among microbial communities in plateau cold-region lakes affected by seasonal ice cover remains limited. This research involved investigating three lakes in the Inner Mongolia segment of the Yellow River basin during frozen and unfrozen periods in two habitats: water bodies and sediments. The research examined the composition and function of bacteria, archaea, and fungi across different times and habitats within the basin, their response to environmental variables in water and sediment, and inter-domain interactions between bacteria-archaea and bacteria-fungi were compared using interdomain ecological network (IDEN).

View Article and Find Full Text PDF

Multidrug efflux pumps have been found to play a crucial role in drug resistance in bacteria and eukaryotes. In this study, we investigated the presence of functional multidrug and toxic compound extrusion (MATE) efflux pumps, inferred from whole genome sequencing, in the halophilic archaeon Halorubrum amylolyticum CSM52 using Hoechst 33342 dye accumulation and antimicrobial sensitivity tests in the presence and absence of efflux pump inhibitors (EPIs). The whole genome sequence of H.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!