The introduction of high-yielding semi-dwarf varieties of wheat into cultivation has led to a "green revolution." This has required intensive research into various sources of dwarfism in wheat. However, there has been very little advancement in research on dwarfing genes in rye in comparison to wheat or barley. So far, three dominant dwarfing genes (Ddw1, Ddw3, and Ddw4) and three recessive genes (ct1, ct2, and np) have been characterized and precisely mapped in rye. There is no complete catalog of dwarfing genes available in rye. This paper presents an identification of the source of dwarfism and preliminary characterization of the new recessive gene dw9 from the BK-1 line. The gene was mapped on the long arm of the 6R chromosome and belongs to the GA-insensitive group. The initial characterization of the influence of this gene on morphological traits shows that it significantly affects the decrease of yielding trait parameters. A full evaluation can be performed after detailed breeding studies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7051059PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0229564PLOS

Publication Analysis

Top Keywords

dwarfing genes
12
gene dw9
8
genes rye
8
identification mapping
4
mapping recessive
4
dwarfing
4
recessive dwarfing
4
gene
4
dwarfing gene
4
dw9 6rl
4

Similar Publications

Mutants with simultaneous germline mutations were obtained in all three F5H genes and all three FAD2 genes (one to eleven mutated alleles) in order to improve the feed value of the seed meal and the fatty acid composition of the seed oil. In mutants with multiple mutated F5H alleles, sinapine in seed meal was reduced by up to 100%, accompanied by a sharp reduction in the S-monolignol content of lignin without causing lodging or stem break. A lower S-lignin monomer content in stems can contribute to improved stem degradability allowing new uses of stems.

View Article and Find Full Text PDF

Insights from the single-cell level: lineage trajectory and somatic-germline interactions during spermatogenesis in dwarf surfclam Mulinia lateralis.

BMC Genomics

January 2025

MOE Key Laboratory of Marine Genetics and Breeding, Laboratory for Marine Biology and Biotechnology (Qingdao Marine Science and Technology Center), Ocean University of China, Qingdao, China.

Background: Spermatogenesis is a complex process of cellular differentiation that commences with the division of spermatogonia stem cells, ultimately resulting in the production of functional spermatozoa. However, a substantial gap remains in our understanding of the molecular mechanisms and key driver genes that underpin this process, particularly in invertebrates. The dwarf surfclam (Mulinia lateralis) is considered an optimal bivalve model due to its relatively short generation time and ease of breeding in laboratory settings.

View Article and Find Full Text PDF

Potato (Solanum tuberosum) is the third-most important food crop in the world. Although the potato genome has been fully sequenced, functional genomics research of potato lags behind that of other major food crops, largely due to the lack of a model experimental potato line. Here, we present a diploid potato line, 'Jan,' which possesses all essential characteristics for facile functional genomics studies.

View Article and Find Full Text PDF

Dwarfism is a major trait for developing lodging-resistant rice cultivars. Gamma irradiation-induced mutagenesis has proven to be an effective method for generating dwarf rice mutants. In this research, we isolated a dwarf mutant from Anna R (4) in the M generation and subsequently stabilized the trait through successive selfing of progeny across the M-M generations.

View Article and Find Full Text PDF

Identification and functional characterization of the C2H2 ZFP transcription factor CmSUP7 in regulating melon plant growth and fruit development.

Plant Physiol Biochem

January 2025

Key Laboratory of Herbage & Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, China. Electronic address:

The SUPERMAN (SUP) proteins, which belong to the single C2H2 zinc finger proteins (ZFP) subclass, participate in various aspects of gene regulation in plant morphogenesis and stress response, but their role in melon (Cucumis melo) is still largely unknown. We identified a total of 28 CmSUP genes in the melon genome, all containing QALGGH conserved domain. Collinearity analysis showed that melon had several homologous gene pairs with Arabidopsis and tomato, indicating the gene duplication events during the evolution.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!