Semiclassical Approach to Photophysics Beyond Kasha's Rule and Vibronic Spectroscopy Beyond the Condon Approximation. The Case of Azulene.

J Chem Theory Comput

Laboratory of Theoretical Physical Chemistry, Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland.

Published: April 2020

Azulene is a prototypical molecule with an anomalous fluorescence from the second excited electronic state, thus violating Kasha's rule, and with an emission spectrum that cannot be understood within the Condon approximation. To better understand the photophysics and spectroscopy of azulene and other nonconventional molecules, we developed a systematic, general, and efficient computational approach combining the semiclassical dynamics of nuclei with electronic structure. First, to analyze the nonadiabatic effects, we complement the standard population dynamics by a rigorous measure of adiabaticity, estimated with the multiple-surface dephasing representation. Second, we propose a new semiclassical method for simulating non-Condon spectra, which combines the extended thawed Gaussian approximation with the efficient single-Hessian approach. S ← S and S ← S absorption and S → S emission spectra of azulene, recorded in a new set of experiments, agree very well with our calculations. We find that accuracy of the evaluated spectra requires the treatment of anharmonicity, Herzberg-Teller, and mode-mixing effects.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jctc.0c00079DOI Listing

Publication Analysis

Top Keywords

kasha's rule
8
condon approximation
8
semiclassical approach
4
approach photophysics
4
photophysics kasha's
4
rule vibronic
4
vibronic spectroscopy
4
spectroscopy condon
4
approximation case
4
azulene
4

Similar Publications

We have prepared a series of bis(semiquinone) compounds with dithiophene bridges of different length that evolve from closed-shell (smaller compound) to full diradical (longer compound) for which the narrow singlet-triplet energy gap allows the triplet population at 298 K. The medium size system has a variety of photonic properties with absorptions and emission in the optical near-infrared region mediated by a unique case of anti-Kasha emission. A whole set of optical absorption/emission and vibrational steady state spectroscopies as well as picosecond transient absorption spectroscopy, all complemented with spectroelectrochemistry and theoretical calculations, is presented.

View Article and Find Full Text PDF

A temperature sensor with a wide spectral range based on a dual-emissive TADF dendrimer system.

Nat Commun

August 2024

Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, KY16 9ST, UK.

Dual emission from thermally activated delayed fluorescence (TADF) emitters is often difficult to observe, especially in solution, limited by Kasha's rule. Two TADF dendrimers containing N-doped polycyclic aromatic hydrocarbons as acceptors are designed and synthesized. Compound 2GCzBPN, having a strongly twisted geometry, exhibits TADF, while 2GCzBPPZ, possessing a less twisted geometry, shows dual emission associated with the monomer and aggregate that is TADF.

View Article and Find Full Text PDF

Herein, we present a series of stable radicals containing a trityl carbon-centered radical moiety exhibiting interesting properties. The radicals demonstrate the most blue-shifted anti-Kasha doublet emission reported so far with high color purity (full width at half-maximum of 46 nm) and relatively high photoluminescence quantum yields of deoxygenated toluene solutions reaching 31%. The stable radicals demonstrate equilibrated bipolar charge transport with charge mobility values reaching 10 cm/V·s at high electric fields.

View Article and Find Full Text PDF

Dual Channel Emissions of Kasha and Anti-Kasha from a Single Radical Molecule.

Angew Chem Int Ed Engl

October 2024

Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM) & School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, P. R. China.

Stable open-shell luminescent radicals have recently attracted much attention due to their unique luminescence properties. However, a radical molecule with both Kasha and anti-Kasha doublet emission properties has not been reported. Herein, we have successfully synthesized a stable chlorine-substituted Chichibabin's hydrocarbon, TTM-TTM, along with its mono-radical counterpart, TTM-HTTM.

View Article and Find Full Text PDF

Achieving Dual Emission of Fluorescence and Phosphorescence from Anti-Kasha's Metal-Organic Halides for Information Encryption.

Inorg Chem

July 2024

Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis & Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, P. R. China.

Luminescent materials typically emit their fluorescence or phosphorescence at a specific wavelength with different excitation energies via the so-called Kasha's rule. If fluorescence or phosphorescence emission via anti-Kasha's rule could be achieved, it will hold great promise for applications in many fields. In this work, we report the synthesis and characterization of new metal-organic halide materials with dual emission of efficient room-temperature phosphorescence and fluorescence, which obey anti-Kasha's rule.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!