Predicting and understanding the chemical bond is one of the major challenges of computational quantum chemistry. Kohn-Sham density functional theory (KS-DFT) is the most common method, but approximate density functionals may not be able to describe systems where multiple electronic configurations are equally important. Multiconfigurational wave functions, on the other hand, can provide a detailed understanding of the electronic structures and chemical bonds of such systems. In the complete active space self-consistent field (CASSCF) method, one performs a full configuration interaction calculation in an active space consisting of active electrons and active orbitals. However, CASSCF and its variants require the selection of these active spaces. This choice is not black box; it requires significant experience and testing by the user, and thus active space methods are not considered particularly user-friendly and are employed only by a minority of quantum chemists. Our goal is to popularize these methods by making it easier to make good active space choices. We present a machine learning protocol that performs an automated selection of active spaces for chemical bond dissociation calculations of main group diatomic molecules. The protocol shows high prediction performance for a given target system as long as a properly correlated system is chosen for training. Good active spaces are correctly predicted with a considerably better success rate than random guess (larger than 80% precision for most systems studied). Our automated machine learning protocol shows that a "black-box" mode is possible for facilitating and accelerating the large-scale calculations on multireference systems where single-reference methods such as KS-DFT cannot be applied.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jctc.9b01297 | DOI Listing |
NMR Biomed
February 2025
Department of Biomedical Engineering, Yale University, New Haven, Connecticut, USA.
Cellular metabolism is inextricably linked to transmembrane levels of proton (H), sodium (Na), and potassium (K) ions. Although reduced sodium-potassium pump (Na-K ATPase) activity in tumors directly disturbs transmembrane Na and K levels, this dysfunction is a result of upregulated aerobic glycolysis generating excessive cytosolic H (and lactate) which are extruded to acidify the interstitial space. These oncogene-directed metabolic changes, affecting intracellular Na and H, can be further exacerbated by upregulation of ion exchangers/transporters.
View Article and Find Full Text PDFCirc Res
January 2025
Center for Genetic Medicine, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China (X.H., J.Z., C.X., R.C., P.J., X.J., P.H.).
Background: Cardiac ischemia/reperfusion disrupts plasma membrane integrity and induces various types of programmed cell death. The ESCRT (endosomal sorting complex required for transport) proteins, particularly AAA-ATPase Vps4a (vacuolar protein sorting 4a), play an essential role in the surveillance of membrane integrity. However, the role of ESCRT proteins in the context of cardiac injury remains unclear.
View Article and Find Full Text PDFCureus
December 2024
Department of Neurosurgery, Osaka University Graduate School of Medicine, Suita, JPN.
Traumatic cerebrospinal fluid (CSF) leakage from skull base fractures increases the risk of bacterial meningitis, which is associated with a high mortality rate in adults, and commonly results in severe neurological outcomes. While most cases of CSF leakage occur within three months post-injury and generally resolve spontaneously, delayed-onset meningitis remains a challenging complication. Herein, we report a rare case of severe bacterial meningitis with an intraventricular abscess one year following a frontal skull base fracture, despite no CSF leak.
View Article and Find Full Text PDFFront Psychol
December 2024
Faculty of Systems Information Science, Future University Hakodate, Hakodate, Japan.
Introduction: Effective decision-making in ball games requires the ability to convert positional information from a first-person perspective into a bird's-eye view. To address this need, we developed a virtual reality (VR)-based training system designed to enhance spatial cognition.
Methods: Using a head-mounted virtual reality display, participants engaged in tasks where they tracked multiple moving objects in a virtual space and reproduced their positions from a bird's-eye perspective.
Unlabelled: The reflexive translation of symbols in one chemical language to another defined genetics. Yet, the co-linearity of codons and amino acids is so commonplace an idea that few even ask how it arose. Readout is done by two distinct sets of proteins, called aminoacyl-tRNA synthetases (AARS).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!