Establishing linear-free-energy relationships for the quadricyclane-to-norbornadiene reaction.

Org Biomol Chem

Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark.

Published: March 2020

The kinetics of the thermal quadricyclane-to-norbornadiene (QC-to-NBD) isomerization reaction was studied for a large selection of derivatives where the one NBD double bond contains a cyano and aryl substituent of either electron-withdrawing or -donating character. While the kinetics data did not satisfy a linear-free-energy-relationship for all the derivatives based on Hammett σ values, we found individual linear relationships for derivatives containing either electron-withdrawing or electron-donating para substituents on the aryl group; with the most electron-witdrawing substituent in the one series and with the most electron-donating substituent in the other providing the fastest reaction (corresponding to opposite slopes of the Hammett plots). All data were well described, however, by a linear relationship when using Creary radical values; the correlation could be slightly improved by using a combination of σ and values (used in ratio of 0.104 : 1). The results imply a combination of polar and free radical effects for the isomerization reaction of this specific class of derivatives, with the latter playing the most significant role. The NBD derivatives were prepared by Diels-Alder cycloaddition reactions between cyclopentadiene and 3-arylpropiolonitriles, and in the case of bromophenyl derivatives further cyanation and Sonogashira coupling reactions were performed.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d0ob00147cDOI Listing

Publication Analysis

Top Keywords

isomerization reaction
8
derivatives
6
establishing linear-free-energy
4
linear-free-energy relationships
4
relationships quadricyclane-to-norbornadiene
4
reaction
4
quadricyclane-to-norbornadiene reaction
4
reaction kinetics
4
kinetics thermal
4
thermal quadricyclane-to-norbornadiene
4

Similar Publications

Context: DNAN/DNB cocrystals, as a newly developed type of energetic material, possess superior safety and thermal stability, making them a suitable alternative to traditional melt-cast explosives. Nonetheless, an exploration of the thermal degradation dynamics of the said cocrystal composite has heretofore remained uncharted. Consequently, we engaged the ReaxFF/lg force field modality to delve into the thermal dissociation processes of the DNAN/DNB cocrystal assembly across a spectrum of temperatures, encompassing 2500, 2750, 3000, 3250, and 3500 K.

View Article and Find Full Text PDF

Enantioselective construction of silicon-stereogenic vinylsilanes from simple alkenes.

Nat Commun

January 2025

State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations, Nankai University 94 Weijin Road, Tianjin, China.

The diverse utility of acyclic vinylsilanes has driven the interest in the synthesis of enantioenriched vinylsilanes bearing a Si-stereogenic center. However, the predominant approaches for catalytic asymmetric generation of Si-stereogenic vinylsilanes have mainly relied on transition metal-catalyzed reactions of alkynes with different silicon sources. Here we successfully realize the enantioselective synthesis of linear silicon-stereogenic vinylsilanes with good yields and enantiomeric ratios from simple alkenes under rhodium catalysis.

View Article and Find Full Text PDF

The hexadehydro-Diels-Alder (HDDA) reaction is a cycloisomerization between a conjugated diyne and a tethered diynophile that generates -benzyne derivatives. Considerable fundamental understanding of aryne reactivity has resulted from this body of research. The multi-yne cycloisomerization substrate is typically pre-formed and the (rate-limiting) closure of this diyne/diynophile pair to produce the isomeric benzyne generally requires thermal input, often requiring reaction temperatures of >100 °C and times of 16-48 h to achieve near-full conversion.

View Article and Find Full Text PDF

Palladium-Catalyzed Tandem Reactions via Allene Intermediates for the Rapid Synthesis of a Fused Indenone-Indole Scaffold.

Org Lett

January 2025

State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211800, China.

A palladium-catalyzed tandem reaction of 1-(2-iodophenyl)-3-arylprop-2-yn-1-ones and 1-(2-azidophenyl)propargyl ethers is developed to provide the rapid construction of a fused polycyclic indenone-indole scaffold under mild conditions. The reaction proceeds via a highly ordered process involving Sonogashira coupling, propargyl-allenyl isomerization, allene-azide cycloaddition, denitrogenation, and diradical coupling. The proposed reaction mechanism is supported by experimental and computational studies.

View Article and Find Full Text PDF

Antibody-drug conjugates (ADCs) are a promising drug modality substantially expanding in both the discovery space and clinical development. Assessing the biotransformation of ADCs and is important in understanding their stability and pharmacokinetic properties. We previously reported biotransformation pathways for the anti-B7H4 topoisomerase I inhibitor ADC, AZD8205, puxitatug samrotecan, that underpin its structural stability using an intact protein liquid chromatography-high resolution mass spectrometry (LC-HRMS) approach.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!