Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The breakdown of intestinal anastomosis is a serious postsurgical complication. The worst complication is anastomotic leakage, resulting in contaminated peritoneal cavity, sepsis, multi-organ failure and even death. In problematic locations like the rectum, the leakage rate has not yet fallen below 10 %. Such a life-threatening condition is the result of impaired healing in the anastomotic wound. It is still vital to find innovative strategies and techniques in order to support regeneration of the anastomotic wound. This paper reviews the surgical techniques and biomaterials used, tested or published. Electrospun nanofibers are introduced as a novel and potential material in gastrointestinal surgery. Nanofibers possess several, unique, physical and chemical properties, that may effectively stimulate cell proliferation and collagen production; a key requirement for the healed intestinal wound.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.33549/physiolres.934387 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!