We perform dynamics simulations of donor-bridge-acceptor triads following photoexcitation and correlate nuclear motions with the charge-transfer event using the short-time Fourier transform technique. Broadly, the porphyrin bridges undergo higher energy vibrations, whereas the fullerene acceptors undergo low energy modes. Aryl side groups exhibit torsional motions relative to the porphyrin. Aryl linkers between the bridge and acceptor are restricted from such motions and therefore express ring distortion modes. Finally, we find an amide linker mode that is directionally sensitive to electron motion. This work supports the notion of vibrationally coupled ultrafast charge transfer found in both experimental and theoretical studies and lays a foundational method for identifying key vibrational modes for parametrizing future theoretical models.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpcb.0c00203DOI Listing

Publication Analysis

Top Keywords

mixed quantum
4
quantum classical
4
classical simulations
4
simulations charge-transfer
4
charge-transfer dynamics
4
dynamics model
4
model light-harvesting
4
light-harvesting complex
4
complex transient
4
transient vibrational
4

Similar Publications

The corrosion of low-alloy steel in ethanolamine solution, simulating steam generator chemistry, is studied by in situ chronopotentiometry and electrochemical impedance spectroscopy combined with ex situ analysis of the obtained oxide films and model calculations. Hydrodynamic calculations of the proposed setup to study flow-assisted corrosion demonstrate that turbulent conditions are achieved. Quantum chemical calculations indicate the adsorption orientation of ethanolamine on the oxide surface.

View Article and Find Full Text PDF

Study on the Brill transition of polyamide 6 with different crystal forms using low- and high-frequency Raman spectroscopy.

RSC Adv

January 2025

Graduate School of Human Development and Environment, Kobe University 3-11, Tsurukabuto, Nada-ku Kobe Hyogo 657-0011 Japan

Polyamide 6 (PA6) in its α and γ-forms was studied from 30 to 220 °C using Raman spectroscopy in the low- and high-wavenumber regions. Quantum chemical calculations were employed to assist with band assignments. In the low-wavenumber region, a peak at approximately 100 cm, attributable to a mixed mode of methylene lateral motion and amide group stretching, was observed.

View Article and Find Full Text PDF

Quasi-two-dimensional (quasi-2D) mixed-halide perovskites are a requisite for their applications in highly efficient blue perovskite light-emitting diodes (PeLEDs) owing to their strong quantum confinement effect and high exciton binding energy. The pace of quasi-2D blue PeLEDs is hindered primarily by two factors: challenges in precisely managing the phase distribution and defect-mediated nonradiative recombination losses. Herein, we utilize 2,2-diphenylethylamine (DPEA) with bulky steric hindrance to disturb the assembly process of a slender spacer host cation, 4-fluorophenylethylammonium (-F-PEA), enhancing phase distribution management in quasi-2D PeLEDs.

View Article and Find Full Text PDF

Cavity as radio telescope for galactic dark photon.

Sci Bull (Beijing)

January 2025

School of Physics and State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871, China; Center for High Energy Physics, Peking University, Beijing 100871, China; Key Laboratory of Particle Acceleration Physics and Technology, Chinese Academy of Sciences, Beijing 100049, China. Electronic address:

Dark photons, as a minimal extension of the Standard Model through an additional Abelian gauge group, may propagate relativistically across the galaxy, originating from dark matter decay or annihilation, thereby contributing to a galactic dark photon background. The generation of dark photons typically favors certain polarization modes, which are dependent on the interactions between dark matter and dark photons. We introduce a framework in which a resonant cavity is utilized to detect and differentiate these polarizations, leveraging the daily variation in expected signals due to the anisotropic distribution of dark photons and the rotation of the Earth.

View Article and Find Full Text PDF

One key challenge in the study of nonadiabatic dynamics in open quantum systems is to balance computational efficiency and accuracy. Although Ehrenfest dynamics (ED) is computationally efficient and well-suited for large complex systems, ED often yields inaccurate results. To address these limitations, we improve the accuracy of the traditional ED by adding a random force (E + σ).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!