Electrochemical energy storage arises from processes that are broadly categorized as capacitive, pseudocapacitive, or battery-like. Advanced charge-storing materials that are designed to deliver high capacity at a high rate often exhibit a multiplicity of such mechanisms, which complicates the understanding of their charge-storage behavior. Herein, we apply a "3D Bode analysis" technique to identify key descriptors for fast Li-ion storage processes, where AC impedance data, such as the real capacitance (') or phase angle (ϕ), are represented versus the frequency () and a third independent variable, the applied DC cell voltage. For double-layer processes, a near-constant ' or ϕ is supported across the entire voltage range, and the decrease in these values shows a near-linear decrease at higher . For pseudocapacitance, an increase in ' is delivered, accompanied by high ' retention at higher compared to double-layer processes. Interestingly, the lower ϕ values, where ' is highest, suggest that this is a key descriptor for pseudocapacitance, where high-rate charge storage is still facilitated within a kinetically limited regime. For battery-like processes, a high ' is only observed at the voltage at which the material stores charge, while outside that voltage, ' is negligible. The three-dimensional (3D) Bode analysis allows charge-storage dynamics to be mapped out in great detail with more delineation between mechanisms compared to the more frequently deployed kinetic analyses derived from cyclic voltammetry.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.0c02020 | DOI Listing |
Talanta
January 2025
Department of Physical and Analytical Chemistry, Faculty of Chemistry, University of Oviedo, C/ Julián Clavería 8, 33006, Oviedo, Spain; Health Research Institute of the Principality of Asturias (ISPA), Avda. Hospital Universitario s/n, 33011, Oviedo, Spain. Electronic address:
The use of inductively coupled plasma mass spectrometry in single particle mode (SP-ICP-MS) for the characterization of micro and nanostructured materials is a growing field of research. In this work, the possibility of expanding the boundaries to anisotropic structures including solid Pt-nanorods and hollowed FeO-nanotubes is presented. The obtained structures are evaluated by scanning electron microscopy (SEM), high-resolution electron microscopy (HR-TEM) and SP-ICP-MS techniques.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
State Key Laboratory of New Textile Materials and Advanced Processing Technologies, College of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, P. R. China.
Carbon fiber (CF) has been widely used in aerospace, military, infrastructure, sports, and leisure fields owing to its excellent mechanical properties, superior corrosion and friction resistances, excellent thermal stability, and lightweight. However, the ultrablack appearance derived from the extremely strong absorption of light throughout the entire visible region makes it difficult to satisfy the aesthetic and pleasurable demands of the colorful world and limits their applications in a broader field. Herein, inspired by the , a double-layer ultrathin AlO/TiO composite structure was fabricated on CFs by the atomic layer deposition method.
View Article and Find Full Text PDFNanomaterials (Basel)
January 2025
School of Microelectronics, Southern University of Science and Technology, Shenzhen 518055, China.
This study optimizes the CuO/GaO heterojunction diodes (HJDs) by tailoring the structural parameters of CuO layers. The hole concentration in the sputtered CuO was precisely controlled by adjusting the Ar/O gas ratio. Experimental investigations and TCAD simulations were employed to systematically evaluate the impact of the CuO layer dimension and hole concentration on the electrical performance of HJDs.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Department of Chemistry, Pohang University of Science and Technology, Pohang 37673, Republic of Korea.
Ensuring the stability of electrocatalysts is paramount to the success of electrochemical energy conversion devices. Degradation is a fundamental process involving the release of positively charged metal ions into the electric double layer (EDL) and their subsequent diffusion into the bulk electrolyte. However, despite its vital importance in achieving prolonged electrocatalysis, the underlying causality of catalyst dissolution with the EDL structure remains largely unknown.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
Shanxi Key Laboratory of Carbon Materials, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001 China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049 China. Electronic address:
The application of ionic liquid electrolytes in ultrafast supercapacitors to achieve wide electrochemical operating windows and high electrochemical stability is highly applauded. However, the strong Coulomb interaction between ions leads to the overscreening effect and slow establishment process of the electrical double layer (EDL), which deteriorates the rate performance of supercapacitors. Herein, inspired by Coulomb's law and EDL transient dynamics, we introduce competitive hydrogen bond interactions into typical ionic-liquid electrolytes to weaken the Coulomb interaction between ions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!