Empowering organic-based negative electrode material based on conjugated lithium carboxylate through molecular design.

ChemSusChem

Laboratoire de Réactivité et Chimie des Solides (LRCS), UMR CNRS 7314, Université de Picardie Jules Verne (UPJV), Amiens, 33 rue Saint-leu, 80039, Amiens, France.

Published: May 2020

In this article, we describe the design and gram-scale synthesis of a new anthracene-based negative electrode material for Li-ion batteries. Based on rational design, featuring a strong electronic delocalization and a long conjugation length, this material has power performance to date unmatched for a conjugated lithium carboxylate, displaying a gravimetric capacity of 150 mAh g at a cycling rate of 20 Li /h (10 C) without any electrode engineering. Additionally, to the design, partial solubility of the fully reduced phase may also explain the electrochemical performances obtained at a low and high rate.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cssc.202000140DOI Listing

Publication Analysis

Top Keywords

negative electrode
8
electrode material
8
conjugated lithium
8
lithium carboxylate
8
empowering organic-based
4
organic-based negative
4
material based
4
based conjugated
4
carboxylate molecular
4
design
4

Similar Publications

Reusable Biosensor for Easy RNA Detection from Unfiltered Saliva.

Sensors (Basel)

January 2025

Department of Clinical and Molecular Biochemistry, Pomeranian Medical University in Szczecin, 72 Powstańców Wlkp. Al., 70-111 Szczecin, Poland.

Biosensors are transforming point-of-care diagnostics by simplifying the detection process and enabling rapid, accurate testing. This study introduces a novel, reusable biosensor designed for direct viral RNA detection from unfiltered saliva, targeting SARS-CoV-2. Unlike conventional methods requiring filtration, our biosensor leverages a unique electrode design that prevents interference from saliva debris, allowing precise measurements.

View Article and Find Full Text PDF

This study aims to evaluate factors influencing revision cochlear implant surgeries, including patient demographics, surgical techniques, and radiological findings. The main aim was to identify factors influencing surgical success to inform clinical treatment and enhance patient outcomes. This cross-sectional study included adult patients over the age of 18 who underwent revision cochlear implant surgery due to implant-related complications.

View Article and Find Full Text PDF

ConspectusLithium-ion batteries are recognized as an important electrochemical energy storage technology due to their superior volumetric and gravimetric energy densities. Graphite is widely used as the negative electrode, and its adoption enabled much of the modern portable electronics technology landscape. However, developing markets, such as electric vehicles and grid-scale storage, have increased demands, including higher energy content and a diverse materials supply chain.

View Article and Find Full Text PDF

Time series segmentation for recognition of epileptiform patterns recorded via microelectrode arrays in vitro.

PLoS One

January 2025

Instituto de Microelectrónica de Sevilla (IMSE-CNM), Consejo Superior de Investigaciones Científicas (CSIC) and Universidad de Sevilla, Sevilla, Spain.

Epilepsy is a prevalent neurological disorder that affects approximately 1% of the global population. Approximately 30-40% of patients respond poorly to antiepileptic medications, leading to a significant negative impact on their quality of life. Closed-loop deep brain stimulation (DBS) is a promising treatment for individuals who do not respond to medical therapy.

View Article and Find Full Text PDF

Cochlear implants are well established devices for treating severe hearing loss. However, due to the trauma caused by the insertion of the electrode and the subsequent formation of connective tissue, their clinical effectiveness varies. The aim of the current study was to achieve a long-term reduction in connective tissue growth and impedance by combining surface patterns on the electrode array with a poly-L-lactide coating containing 20% diclofenac.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!