Nitric oxide metabolism in the human placenta during aberrant maternal inflammation.

J Physiol

Lawrence D Longo Center for Perinatal Biology and Department of Pediatrics, Loma Linda University, 11175 Campus Street, Loma Linda, CA, 92354, USA.

Published: June 2020

Key Points: Nitric oxide (NO) is a gasotransmitter with important physiological and pathophysiological roles in pregnancy. There is limited information available about the sources and metabolism of NO and its bioactive metabolites (NOx) in both normal and complicated pregnancies. The present study characterized and quantified endogenous NOx in human and mouse placenta following determination of the stability of exogenous NOx in placental homogenates. NOx have differential stability in placental homogenates. NO and iron nitrosyl species (FeNOs), are relatively unstable in placental homogenates from normal placentas. Exogenous NO, nitrite and nitrosothiols react with placental homogenates to form iron nitrosyl complexes. FeNOs were also detected endogenously in mouse and human placenta. NOx levels in placental villous tissue are increased in fetal growth restriction vs. placentas from women with normal pregnancies, particularly in fetal growth restriction associated with pre-eclampsia. Villitis was not associated, however, with an increase in NOx levels in either normotensive or pre-eclamptic placentas. The results call for further investigation of FeNOs in normal and complicated pregnancies.

Abstract: Nitric oxide (NO) is a gasotransmitter with important roles in pregnancy under both physiological and pathophysiological conditions. Although products of NO metabolism (NOx) also have significant bioactivity, little is known about the role of NO and NOx under conditions of aberrant placental inflammation during pregnancy. An ozone-based chemiluminescence approach was used to investigate the stability and metabolic fate of NOx in human placental homogenates from uncomplicated pregnancies in healthy mothers compared to that in placental tissue from normotensive and pre-eclamptic pregnancies complicated with fetal growth restriction (FGR) with and without villitis of unknown aetiology. We hypothesized that placental NOx would be increased in FGR vs. normal tissue, and be further increased in villitis vs. non-villitis placentas. Findings indicate that nitrate, nitrite and nitrosothiols, but not NO or iron nitrosyl species (FeNOs), are relatively stable in placental homogenates from normal placentas, and that NO, nitrite and nitrosothiols react with placental homogenates to form iron nitrosyl complexes. Furthermore, NOx levels in placental villous tissue are increased in FGR vs. placentas from women with normal pregnancies, particularly in FGR associated with pre-eclampsia. However, in contrast to our hypothesis, villitis was not associated with an increase in NOx levels in either normotensive or pre-eclamptic placentas. Our results also strongly support the involvement of FeNOs in both mouse and human placenta, and call for their further study as a critical mechanistic link between pre-eclampsia and fetal growth restriction.

Download full-text PDF

Source
http://dx.doi.org/10.1113/JP279057DOI Listing

Publication Analysis

Top Keywords

placental homogenates
28
iron nitrosyl
16
nox levels
16
fetal growth
16
growth restriction
16
nitric oxide
12
human placenta
12
nox
12
placental
12
nitrite nitrosothiols
12

Similar Publications

Gelatin methacryloyl biomaterials and strategies for trophoblast research.

Placenta

November 2024

Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO, 63130, USA; Dept. of Biomedical Engineering, USA; Center for Women's Health Engineering, USA; The Institute of Materials Science & Engineering, Washington University in St. Louis, St. Louis, MO, 63130, USA.

Rising maternal mortality rates in the U.S. are a significant public health issue that must be addressed; however, much of the basic science information required to target pregnancy-related pathologies have not yet been defined.

View Article and Find Full Text PDF

The whole is lesser than the sum of its parts? Dissecting layer-enriched samples of rodent placenta is worth the effort.

Placenta

November 2024

Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada; Centre for Cell Biology, Development and Disease, Simon Fraser University, Burnaby, BC, Canada; British Columbia Children's Hospital Research Institute, Vancouver, BC, Canada; Women's Health Research Institute, BC Women's Hospital and Health Centre, Vancouver, British Columbia, Canada. Electronic address:

Gene expression in the placenta, assessed by bulk RNA-seq, is a common method to explore placental function. Many rodent studies homogenize the entire placenta, and yet doing so may obscure differences within specific functional regions such as the labyrinth, junctional zone and decidua. Conversely, analysis of the whole placenta could generate apparent differences due to changes in composition (e.

View Article and Find Full Text PDF

The combination of a ime eversible Markov process with a "hidden" mixture of amma distributed relative site rates plus nvariant sites have become the most favoured options for likelihood and other probabilistic models of nucleotide evolution (e.g., tr4gi which approximates a gamma with four rate classes).

View Article and Find Full Text PDF

The proper function of the placenta is essential for the health and growth of the fetus and the mother. The placenta relies on dynamic gene expression for its correct and timely development and function. Although numerous studies have identified genes vital for placental functions, equine placental molecular research has primarily focused on single placental locations, in sharp contrast with the broader approach in human studies.

View Article and Find Full Text PDF

Background: Placental Derived Nucleoproteins (PDNs) is commonly associated with the process of angiogenesis, and doesn't affect the healthy vasculature. PDNs are clinically estimated for the treatment of cancer cases and severe hepatic injuries. Thus, the pathophysiological effects of PDNs targeting liver fibrosis is a concern.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!