The standardization of secondary electrolytic conductivity cells requires the use of a certified reference material. The accepted certification method involves electrochemical impedance spectroscopy (EIS) to estimate the material's solution resistance. This method normally assumes that the impedance's imaginary component can be neglected; and hence, the measured impedance approximates the real impedance. Thus, a linear extrapolation of the impedance versus the period (inverse frequency) yields solution resistance. However, experimental impedance data usually do not exhibit a linear behavior over the spectra of frequency, which strongly suggest that the ideal capacitive assumption may not strictly apply. To account for the observed nonlinear behavior, we have proposed to introduce the concept of a constant phase element (CPE) to the analysis of impedance. This approach leads to the development of a relationship that improves the fitting of experimental data and improves the accuracy of the estimation, by establishing a critical frequency where extrapolation should be done. Finally, we are presenting simulated results to demonstrate how sizeable capacitive effects can influence the determination of solution resistance, and a final analysis to estimate the impact on constant cell or electrolytic conductivity values.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7045567 | PMC |
http://dx.doi.org/10.1021/acsomega.9b04471 | DOI Listing |
Front Plant Sci
January 2025
College of Life Sciences, Gannan Normal University, Ganzhou, China.
Citrus Huanglongbing (HLB) represents a significant threat to the citrus industry, mainly caused by the phloem-limited bacterium Liberibacter asiaticus (Las). In this review, we summarize recent advances in understanding the relationship between citrus and Las, particularly examining the functions of Sec-dependent effectors (SDEs) and non-classically secreted proteins (ncSPs) in virulence, as well as their targeted interactions with citrus. We further investigate the impact of SDEs on various physiological processes, including systemic acquired resistance (SAR), reactive oxygen species (ROS) accumulation, vesicle trafficking, callose deposition, cell death, autophagy, chlorosis and flowering.
View Article and Find Full Text PDFChem Sci
January 2025
Applied Chemistry and Environmental Science, School of Science, STEM College, RMIT University Melbourne Victoria 3000 Australia
High-temperature reduction of TiO causes the gradual formation of structural defects, leading to oxygen vacancy planar defects and giving rise to Magnéli phases, which are substoichiometric titanium oxides that follow the formula Ti O, with 4 ≤ ≤ 9. A high concentration of defects provides several possible configurations for Ti and Ti within the crystal, with the variation in charge ordered states changing the electronic structure of the material. The changes in crystal and electronic structures of Magnéli phases introduce unique properties absent in TiO, facilitating their diverse applications.
View Article and Find Full Text PDFFront Pharmacol
January 2025
Centre for Molecular Biosciences, Ulster University, Coleraine, United Kingdom.
The WHO has compiled a list of pathogens that urgently require new antibiotics in response to the rising reports of antibiotic resistance and a diminished supply of new antibiotics. At the top of this list is fluoroquinolone-resistant , fluoroquinolone-resistant spp. and vancomycin-resistant .
View Article and Find Full Text PDFJ Biol Methods
October 2024
Department of Biochemistry, Sismanogleio Hospital, Athens 15126, Greece.
Background: Nanotechnology has emerged as a promising field for the diagnosis, monitoring, and treatment of respiratory tract infections (RTIs). By leveraging the unique properties of nanoscale delivery systems, nanotechnology can significantly enhance the selectivity and efficacy of antimicrobials, thereby reducing off-target effects.
Objective: This review explores the development and application of targeted nanosystems in combating viral, bacterial, and fungal RTIs.
Plant Dis
January 2025
INRAE Grand Est-Colmar, 28 rue de Herrlisheim, Colmar, France, 68000;
Esca is the most destructive and predominant of grapevine trunk disease. The chronic infections and vine mortality caused by esca syndrome leads to huge economic losses and threatens the sustainability of vineyards worldwide. Esca is caused by numerous wood-decay and wood-decay associated fungi, but its full etiology remains unclear due to the grapevine trunk disease complex, making effective control methods challenging.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!