When considering microbial biotic interactions, viruses as well as eukaryotic grazers are known to be important components of aquatic microbial food webs. It might be the same for bacterivorous bacteria but these groups have been comparatively less studied. This is typically the case of the and like organisms (BALOs), which are obligate bacterial predators of other bacteria. Recently, the abundance and distribution of three families of this functional group were investigated in perialpine lakes, revealing their presence and quantitative importance. Here, a more in-depth analysis is provided for Lake Geneva regarding the diversity of these bacterial predators at different seasons, sites and depths. We reveal a seasonal and spatial (vertical) pattern for BALOs. They were also found to be relatively diverse (especially ) and assigned to both known and unknown phylogenetic clusters. At last we found that most BALOs were positively correlated to other bacterial groups, mainly Gram-negative, in particular (among which many are predators of other microbes). This study is the first shedding light on this potentially important bacterial killing group in a large and deep lake.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7034301 | PMC |
http://dx.doi.org/10.3389/fmicb.2020.00098 | DOI Listing |
J Infect
January 2025
Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, United States.
Background: Pneumococcal conjugate vaccines (PCVs) introduced in childhood national immunization programs lowered vaccine-type invasive pneumococcal disease (IPD), but replacement with non-vaccine-types persisted throughout the PCV10/13 follow-up period. We assessed PCV10/13 impact on pneumococcal meningitis incidence globally.
Methods: The number of cases with serotyped pneumococci detected in cerebrospinal fluid and population denominators were obtained from surveillance sites globally.
Predicting the outcome of a kidney transplant involving a living donor advances donor decision-making donors for clinicians and patients. However, the discriminative or calibration capacity of the currently employed models are limited. We set out to apply artificial intelligence (AI) algorithms to create a highly predictive risk stratification indicator, applicable to the UK's transplant selection process.
View Article and Find Full Text PDFAppl Environ Microbiol
January 2025
Laboratory of Environmental Virology, Environmental Engineering Institute (IIE), School of Architecture, Civil and Environmental Engineering (ENAC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
Human enteric viruses can remain infective in surface waters for extended periods of time, posing a public health risk. Microbial activity contributes to the inactivation of waterborne enteric viruses, but while individual bacteria-virus interactions have been characterized, the importance of microbial diversity remains unknown. Here, we experimentally manipulated the diversity of bacterial communities from Lake Geneva across three seasons using a dilution-to-extinction approach and monitored the inactivation and genome decay of echovirus 11, a member of the genus.
View Article and Find Full Text PDFSci Total Environ
January 2025
Climate Change Impacts and Risks in the Anthropocene (C-CIA), Institute for Environmental Sciences, University of Geneva, Geneva, Switzerland; dendrolab.ch, Department of Earth Sciences, University of Geneva, Geneva, Switzerland; Department F.-A. Forel for Environmental and Aquatic Sciences, University of Geneva, Switzerland.
Over recent decades, global warming has led to sustained glacier mass reduction and the formation of glacier lakes dammed by potentially unstable moraines. When such dams break, devastating Glacial Lake Outburst Floods (GLOFs) can occur in high mountain environments with catastrophic effects on populations and infrastructure. To understand the occurrence of GLOFs in space and time, build frequency-magnitude relationships for disaster risk reduction or identify regional links between GLOF frequency and climate warming, comprehensive databases are critically needed.
View Article and Find Full Text PDFPlant Dis
December 2024
Department of Plant Protection, Biotechnical Faculty, University of Montenegro, 81000 Podgorica, Montenegro.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!