Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Crossmodal interaction in situated language comprehension is important for effective and efficient communication. The relationship between linguistic and visual stimuli provides mutual benefit: While vision contributes, for instance, information to improve language understanding, language in turn plays a role in driving the focus of attention in the visual environment. However, language and vision are two different representational modalities, which accommodate different aspects and granularities of conceptualizations. To integrate them into a single, coherent system solution is still a challenge, which could profit from inspiration by human crossmodal processing. Based on fundamental psycholinguistic insights into the nature of situated language comprehension, we derive a set of performance characteristics facilitating the robustness of language understanding, such as crossmodal reference resolution, attention guidance, or predictive processing. Artificial systems for language comprehension should meet these characteristics in order to be able to perform in a natural and smooth manner. We discuss how empirical findings on the crossmodal support of language comprehension in humans can be applied in computational solutions for situated language comprehension and how they can help to mitigate the shortcomings of current approaches.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7025497 | PMC |
http://dx.doi.org/10.3389/fnbot.2020.00002 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!