We present microfabrication protocols for rendering intrinsically wetting materials repellent to liquids (omniphobic) by creating gas-entrapping microtextures (GEMs) on them comprising cavities and pillars with reentrant and doubly reentrant features. Specifically, we use SiO2/Si as the model system and share protocols for two-dimensional (2D) designing, photolithography, isotropic/anisotropic etching techniques, thermal oxide growth, piranha cleaning, and storage towards achieving those microtextures. Even though the conventional wisdom indicates that roughening intrinsically wetting surfaces (θo < 90°) renders them even more wetting (θr < θo < 90°), GEMs demonstrate liquid repellence despite the intrinsic wettability of the substrate. For instance, despite the intrinsic wettability of silica θo ≈ 40° for the water/air system, and θo ≈ 20° for the hexadecane/air system, GEMs comprising cavities entrap air robustly on immersion in those liquids, and the apparent contact angles for the droplets are θr > 90°. The reentrant and doubly reentrant features in the GEMs stabilize the intruding liquid meniscus thereby trapping the liquid-solid-vapor system in metastable air-filled states (Cassie states) and delaying wetting transitions to the thermodynamically-stable fully-filled state (Wenzel state) by, for instance, hours to months. Similarly, SiO2/Si surfaces with arrays of reentrant and doubly reentrant micropillars demonstrate extremely high contact angles (θr ≈ 150°-160°) and low contact angle hysteresis for the probe liquids, thus characterized as superomniphobic. However, on immersion in the same liquids, those surfaces dramatically lose their superomniphobicity and get fully-filled within <1 s. To address this challenge, we present protocols for hybrid designs that comprise arrays of doubly reentrant pillars surrounded by walls with doubly reentrant profiles. Indeed, hybrid microtextures entrap air on immersion in the probe liquids. To summarize, the protocols described here should enable the investigation of GEMs in the context of achieving omniphobicity without chemical coatings, such as perfluorocarbons, which might unlock the scope of inexpensive common materials for applications as omniphobic materials. Silica microtextures could also serve as templates for soft materials.

Download full-text PDF

Source
http://dx.doi.org/10.3791/60403DOI Listing

Publication Analysis

Top Keywords

reentrant doubly
16
doubly reentrant
16
sio2/si surfaces
8
gas-entrapping microtextures
8
reentrant
8
cavities pillars
8
intrinsically wetting
8
gems comprising
8
comprising cavities
8
reentrant features
8

Similar Publications

Parameter-Independent Deformation Behaviour of Diagonally Reinforced Doubly Re-Entrant Honeycomb.

Polymers (Basel)

October 2024

Bánki Donát Faculty of Mechanical and Safety Engineering, Óbuda University, H-1034 Budapest, Hungary.

In this study, a novel unit cell design is proposed, which eliminates the buckling tendency of the auxetic honeycomb. The novel unit cell design is a more balanced, diagonally reinforced doubly re-entrant auxetic honeycomb structure (x-reinforced auxetic honeycomb for short). We investigated and compared this novel unit cell design against a wide parameter range.

View Article and Find Full Text PDF

This study proposes a new, doubly re-entrant auxetic unit-cell design that is based on the widely used auxetic honeycomb structure. Our objective was to develop a structure that preserves and enhances the advantages of the auxetic honeycomb while eliminating all negative aspects. The doubly re-entrant geometry design aims to enhance the mechanical properties, while eliminating the buckling deformation characteristic of the re-entrant deformation mechanism.

View Article and Find Full Text PDF

The nature-inspired flexible and re-entrant liquid-superrepellent surface has attracted significant attention due to its excellent superomniphobic performance against low-surface-tension liquids. Although conventional photolithography and molding methods offer the advantage of large-area manufacturing, they often involve multiple double-sided alignment and exposure steps, resulting in complex procedures with long processing cycles. In this study, we proposed a straightforward single-exposure ultraviolet proximity lithography method for re-entrant liquid-superrepellent surface fabrication using a photomask with a coaxial circular aperture and ring.

View Article and Find Full Text PDF

Surface modification, such as bioinspired nanostructured doubly reentrant surfaces that have presented superhydrophobic wettability even under low-surface-tension liquid, is a very promising technology for controlling droplet dynamics, heat transfer, and evaporation. In this article, we investigate the interfacial effects of nanostructured doubly reentrant surfaces on the flow behaviors and local concentration evolution during the evaporation of an ethanol/water multicomponent droplet. Using particle image velocimetry (PIV) and novel aggregate-induced emission-based (AIE) techniques, the flow patterns and local concentration distributions on both hydrophobic and nanostructured doubly reentrant surfaces were probed and compared.

View Article and Find Full Text PDF
Article Synopsis
  • Doubly re-entrant pillars show better liquid repellency compared to straight or single re-entrant pillars, but their hydrodynamic behavior hasn't been well understood.
  • This study combines numerical simulations and experiments to explore how structural features of the pillars affect droplet impact and surface wettability.
  • Key dimensions like height, diameter, and overhang characteristics were modified to assess their influence on making surfaces more repellent to droplets, showing potential for optimizing these structures.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!