Measurement of a tumor's overall genomic instability has gathered recent interest over the identification of specific genomic imbalances, as it may provide a more robust measure of tumor aggressiveness. Here we demonstrate the association of tumor genomic instability in the prediction of disease recurrence in patients with clinically localized clear cell renal cell carcinoma (ccRCC). Genomic copy number analysis was performed using SNP-based microarrays on tumors from 103 ccRCC patients. The number of copy number alterations (CNAs) for each tumor was calculated, and a genomic imbalance threshold (GIT) associated with high stage and high-grade disease was determined. Cox proportional hazards regression analyzes were performed to assess the effect of GIT on recurrence-free survival adjusting for known confounders. In the cohort, copy number losses in chromosome arms 3p, 14q, 6q, 9p, and 1p and gains of 5q and 7p/q were common. CNA burden significantly increased with increasing stage ( < .001) and grade ( < .001). The median CNA burden associated with patients presenting with advanced stage (IV) and high-grade (III/IV) tumors was ≥9, defining the GIT. On regression analysis, GIT was a superior predictor of recurrence (Hazard Ratio 4.44 [CI 1.36-14.48], = .01) independent of stage, with similar results adjusting for grade. These findings were confirmed using an alternative measure of genomic instability, weighted Genomic Integrity Index. Our data support a key role for genomic instability in ccRCC progression. More importantly, we have identified a GIT (≥ 9 CNAs) that is a superior and independent predictor of disease recurrence in high-risk ccRCC patients.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7515487 | PMC |
http://dx.doi.org/10.1080/15384047.2020.1721251 | DOI Listing |
The oncomutation lysine 27-to-methionine in histone H3 (H3K27M) is frequently identified in tumors of patients with diffuse midline glioma-H3K27 altered (DMG-H3K27a). H3K27M inhibits the deposition of the histone mark H3K27me3, which affects the maintenance of transcriptional programs and cell identity. Cells expressing H3K27M are also characterized by defects in genome integrity, but the mechanisms linking expression of the oncohistone to DNA damage remain mostly unknown.
View Article and Find Full Text PDFPathol Res Pract
December 2024
Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA; Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA. Electronic address:
Background: Adenocarcinoma of the esophagus and stomach demands a deeper molecular understanding to advance treatment strategies and improve patient outcomes. Here, we profiled the genome and transcriptome landscape of these cancers, explored molecular characteristics that are undetectable by other sequencing platforms, and analyzed their potential clinical ramifications.
Methods: Our study employed state-of-the-art integrative analyses of whole genome and transcriptome sequencing on 51 matched tumor and germline samples from 46 patients.
Biol Direct
December 2024
Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 Qingchun Road, Hangzhou, 310016, China.
Background: Precision oncology's implementation in clinical practice faces significant constraints due to the inadequacies in tools for detailed patient stratification and personalized treatment methodologies. Dysregulated tryptophan metabolism has emerged as a crucial factor in tumor progression, encompassing immune suppression, proliferation, metastasis, and metabolic reprogramming. However, its precise role in clear cell renal cell carcinoma (ccRCC) remains unclear, and predictive models or signatures based on tryptophan metabolism are conspicuously lacking.
View Article and Find Full Text PDFBr J Cancer
December 2024
Institute of Clinical Sciences, Imperial College London, London, UK.
Background: Quiescence is reversible proliferative arrest. Multiple mechanisms regulate quiescence that are not fully understood. High expression of the CDK inhibitor p21 correlates with a poor prognosis in non-small cell lung cancer (NSCLC) and, in non-transformed cells, p21 promotes quiescence after replication stress.
View Article and Find Full Text PDFNPJ Precis Oncol
December 2024
Institute of Systems, Molecular and Integrative Biology, Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, UK.
Understanding the genomic landscape of breast cancer brain metastases (BCBMs) is key to developing targeted treatments. In this study, targetable genomic profiling was performed on 822 BCBMs, 11,988 local breast cancer (BC) biopsies and 15,516 non-central nervous system (N-CNS) metastases (all unpaired samples) collected during the course of routine clinical care by Foundation Medicine Inc (Boston, MA). Clinically relevant genomic alterations were significantly enriched in BCBMs compared to local BCs and N-CNS metastases.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!