Fluorescence quenching is widely used to obtain association constants between proteins and ligands. This methodology is based on assumption that ground-state complex between protein and ligand is responsible for quenching. Here, we call the attention about the risk of using the temperature criterion for decision of applying or not fluorescence quenching data to measure association constants. We demonstrated that hydrophobic effect can be the major force involved in the interaction and, as such, superposes the well-established rationalization that host/guest complexation is weakened at higher temperatures due to loss of translational and rotational degrees of freedom. To do so, the complexation of bovine serum albumin with octyl gallate was studied by steady-state, time-resolved fluorescence spectroscopy and isothermal titration calorimetry. The results clearly demonstrated the complexation, even though the Stern-Volmer constant increased at higher temperatures (1.6 × 10 and 4.1 × 10 mol L at 20°C and 40°C), which could suggest a simple dynamic process and not complexation. The entropy-driven feature of the interaction was demonstrated by the unfavorable enthalpy (∆H° = 104.4 kJmol ) but favorable entropy (∆S° = 447.5 Jmol K ). The relevance of the ligand hydrophobicity was also evaluated by comparing ascorbic acid and its ester ascorbyl palmitate. Docking simulations showed a higher number of hydrophobic contacts and lower energy poses for the esters, confirming the experimental results. In conclusion, the well-established rationalization that host/guest complexation is weakened at higher temperatures is not straightforward for protein-ligand interactions. Hence, the temperature effect for a decision between static and dynamic quenching and its use to decide if a complexation at ground state is taking place between ligand and protein should not be used.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jmr.2840 | DOI Listing |
Nat Commun
December 2024
College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, China.
Early disease diagnosis hinges on the sensitive detection of signaling molecules. Among these, hydrogen sulfide (HS) has emerged as a critical player in cardiovascular and nervous system signaling. On-chip immunoassays, particularly nanoarray-based interfacial detection, offer promising avenues for ultra-sensitive analysis due to their confined reaction volumes and precise signal localization.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
December 2024
School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, PR China.
Accurate and sensitive fluorescence imaging of biothiols is essential for understanding the mechanism underlying some physiological and pathological events, as well as the prevention and diagnosis of diseases. However, low signal transduction efficiency and poor biocompatibility of fluorescence tags associated with current sensors hinder their potential utilizations. Herein, a smart biothiols sensitive vivo imaging platform on the basis of amplifying nanoprobe has been designed.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
School of Chemical Engineering, Sichuan University, Chengdu 610065, China. Electronic address:
Butyrylcholinesterase (BChE) plays a pivotal role in regulating acetylcholine (ACh) levels during the progression of Alzheimer's disease (AD), so emerged as an attractive target in AD treatment. Vasicine, a naturally occurring pyrroloquinazoline alkaloid, was identified as a natural BChE inhibitor (IC = 1.47 ± 0.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
December 2024
State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, China.
In this study, myofibrillar proteins (MPs) from crucian carp were utilized as a model to investigate the binding mechanism between fish proteins and antibiotic residues. Fluorescence quenching confirmed the static quenching (K = 1.89 × 10 M s, K = 1.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
December 2024
Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran. Electronic address:
In this work, we sought to apprehend quercetin binding affinity and its interaction behavior in complex with human serum albumin (HSA) and calf thymus DNA (ctDNA) through multi spectroscopy and molecular dynamics and also evaluated its effects on colorectal cancer. The binding constants of ctDNA-quercetin and HSA-quercetin complexes at 298 K, which were calculated to be (2.67 ± 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!