The incidence of both nonalcoholic fatty liver disease (NAFLD) and hepatocellular carcinoma (HCC) have been increasing at an alarming rate. Little is known about NAFLD without cirrhosis as a risk for HCC. Here we report, for the first time, generation of a mouse model with a defect in long-chain 3-hydoxy acyl-CoA dehydrogenase (LCHAD). The LCHAD exon 15 deletion was embryonic lethal to the homozygous mice whereas heterozygous mice (HT) develop significant hepatic steatosis starting at young age (3 months old) and HCC at older age (>13 months old) without any evidence of fibrosis or cirrhosis. None of the wild-type (WT) mice developed steatosis and HCC (n = 39), whereas HT-LCHAD mice (n = 41) showed steatosis and ~20% (8/41) developed liver masses with histological features of HCC. Proteomic analysis of liver tissues from WT-mice and HT-mice with no signs of HCC was conducted. Proteins with significant changes in abundance were identified by mass spectrometry. Abundance of 24 proteins was significantly different (p < 0.01) between WT and HT-LCHAD mice. The proteins found to vary in abundance are associated with different cellular response processes ranging from intermediary metabolism of carbohydrate, protein and lipid to oxidative stress, signal transduction and the process of tumorigenesis. Protein expression pattern of the HT-LCHAD mouse liver indicates predisposition to HCC and suggests that impaired hepatic mitochondrial fatty acid oxidation plays an important role in the development and progression of HCC. To assess the implication of these studies in human disease, we demonstrated significant downregulation of HADHA transcripts in HCC patients.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/ijc.32943 | DOI Listing |
Discov Oncol
January 2025
Department of Hepatobiliary Pancreatic Splenic Surgery, Taizhou Central Hospital (Taizhou University Hospital), No.999 Donghai Road, Taizhou, 318000, Zhejiang, China.
Background: A recent study revealed the oncogenic role of box C/D small nucleolar RNA 52 (SNORD52) in hepatocellular carcinoma (HCC) by facilitating the aggressive phenotypes of hepatoma cells. However, the potential role of exosomal SNORD52 in macrophage polarization during HCC progression remains poorly understood.
Methods: Exosomes were isolated from hepatoma cells.
Intern Med J
January 2025
Australian National Liver Transplant Unit, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia.
Background: Access to liver transplantation (LT) is affected by geographic disparities. Higher waitlist mortality is observed in patients residing farther from LT centres, but the impact of distance on post-LT outcomes is unclear.
Aims: To evaluate whether the distance LT recipients reside from their LT centre affects graft and patient outcomes.
Oncoimmunology
December 2025
Immunology Programme, Life Sciences Institute; Centre for Life Sciences, National University of Singapore, Singapore, Singapore.
Tumor-promoting inflammation significantly impacts cancer progression, and targeting inflammatory cytokines has emerged as a promising therapeutic approach in clinical trials. Interleukin (IL)-1α, a member of the IL-1 cytokine family, plays a crucial role in both inflammation and carcinogenesis. How IL-1α is secreted in the tumor microenvironment has been poorly understood, and we previously showed that calpain 1 cleaves pro-IL-1α for mature IL-1α secretion, which exacerbates hepatocellular carcinoma by recruiting myeloid-derived suppressor cells.
View Article and Find Full Text PDFMol Carcinog
January 2025
Department of Nuclear Medicine, Hunan Provincial People's Hospital (First Affiliated Hospital of Hunan Normal University), Changsha, China.
Hepatocellular carcinoma (HCC) is a major global health concern that accounts for more than 80% of all primary hepatic carcinomas. The long noncoding RNA FGD5 antisense RNA 1 (FGD5-AS1) has been linked to HCC cell stemness and proliferation. However, the exact function of FGD5-AS1 in HCC remains unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!