Adaptation of Human Testicular Niche Cells for Pluripotent Stem Cell and Testis Development Research.

Tissue Eng Regen Med

Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, 615 N. Wolfe St., Baltimore, MD, 21205, USA.

Published: April 2020

AI Article Synopsis

Article Abstract

Background: Human testicular cells are greatly valuable to the research community as tools for studying testicular physiology and the effects of environmental pollutants. Because adult testicular cells have a limited self-organization capacity and life span, we investigated whether human pluripotent stem cells (hPSCs) can be used together with testicular cells to move a step closer toward making an optimal model of the human testis.

Methods: We used in vitro culture of donor testicular cells under serum-containing and chemically defined conditions. CRISPR-Cas9 technology was applied to introduce fluorescent transgenes (mCherry2 and EGFP) into hPSCs and testicular cells. hPSC-derived spheroids were co-cultured with human testicular cells in mini-spin bioreactors.

Results: Traditional cell culture conditions used for maintenance of testicular somatic cells generally contain serum and pose limitations on evaluating the role of active molecules on cell functions. We established that chemically defined culture conditions can be used to maintain testicular cells without the loss of proliferative activity. These cultures demonstrate marker expression which is characteristic of common testicular cell types: Sertoli, Leydig, endothelial, myoid cells, and macrophages. In order to model testicular physiology, it is important to be able to perform live cell microscopy. Thus, we generated fluorescent protein-expressing human testicular cells and hPSCs and demonstrated that these cell types can be successfully co-cultured for prolonged periods of time in a three-dimensional microenvironment.

Conclusion: Our research extends the possible applications of human testis-derived somatic cells and shows that they can be used together with hPSCs for further studies of human male reproductive biology.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7105586PMC
http://dx.doi.org/10.1007/s13770-020-00240-0DOI Listing

Publication Analysis

Top Keywords

testicular cells
32
human testicular
16
testicular
13
cells
13
cells hpscs
12
pluripotent stem
8
testicular physiology
8
hpscs testicular
8
chemically defined
8
culture conditions
8

Similar Publications

Background: Diabetes mellitus (DM) poses a major risk to human health due to an array of implications, one of which is a detrimental effect on the testicular and reproductive functions. Euphorbia heterophylla is widely recognized for its medicinal properties worldwide.

Methods And Findings: The objective of this study was to profile E.

View Article and Find Full Text PDF

How do lifestyle and environmental factors influence the sperm epigenome? Effects on sperm fertilising ability, embryo development, and offspring health.

Clin Epigenetics

January 2025

Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, 17003, Girona, Spain.

Recent studies support the influence of paternal lifestyle and diet before conception on the health of the offspring via epigenetic inheritance through sperm DNA methylation, histone modification, and small non-coding RNA (sncRNA) expression and regulation. Smoking may induce DNA hypermethylation in genes related to anti-oxidation and insulin resistance. Paternal diet and obesity are associated with greater risks of metabolic dysfunction in offspring via epigenetic alterations in the sperm.

View Article and Find Full Text PDF

Inverse dose protraction effects of high-LET radiation: evidence and significance.

Mutat Res Rev Mutat Res

January 2025

Radiation Epidemiology Branch, National Cancer Institute, MD 20892-9778, USA; Faculty of Health, Science and Technology, Oxford Brookes University, Headington Campus, OX3 0BP, UK.

Biological effects of ionizing radiation vary with radiation quality, which is often expressed as the amount of energy deposited per unit length, i.e., linear energy transfer (LET).

View Article and Find Full Text PDF

Medicinal herbs, such as the ant nest plant (), are promising for the management of diabetes mellitus-associated infertility. The aim of this study was to evaluate the biological activity of the ant nest plant and its capacity to mitigate the adverse effects of alloxan-induced diabetes on testicular morphology, epididymal function, and sperm quality in male rats. The tuber of the ant nest plant was extracted using methanol and then subjected to phytochemical screenings.

View Article and Find Full Text PDF

Paclitaxel (PAC), derived from Taxus brevifolia, is used to treat solid tumours but causes reproductive toxicity due to oxidative stress, affecting sperm quality and testicular tissue. Nerolidol (NRL), an antioxidant sesquiterpene alcohol, has not been studied for its potential to reduce PAC-induced reproductive damage. This study investigates NRL's ability to mitigate PAC-induced reproductive toxicity in rats.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!