Objective: Gout is characterised by severe interleukin (IL)-1-mediated joint inflammation induced by monosodium urate crystals. Since IL-37 is a pivotal anti-inflammatory cytokine suppressing the activity of IL-1, we conducted genetic and functional studies aimed at elucidating the role of IL-37 in the pathogenesis and treatment of gout.

Methods: Variant identification was performed by DNA sequencing of all coding bases of using molecular inversion probe-based resequencing (discovery cohort: gout n=675, controls n=520) and TaqMan genotyping (validation cohort: gout n=2202, controls n=2295). Predictive modelling of the effects of rare variants on protein structure was followed by in vitro experiments evaluating the impact on protein function. Treatment with recombinant IL-37 was evaluated in vitro and in vivo in a mouse model of gout.

Results: We identified four rare variants in in six of the discovery gout patients; p.(A144P), p.(G174Dfs*16), p.(C181*) and p.(N182S), whereas none emerged in healthy controls (Fisher's exact p-value=0.043). All variants clustered in the functional domain of IL-37 in exon 5 (p-value=5.71×10). Predictive modelling and functional studies confirmed loss of anti-inflammatory functions and we substantiated the therapeutic potential of recombinant IL-37 in the treatment of gouty inflammation. Furthermore, the carrier status of p.(N182S)(rs752113534) was associated with increased risk (OR=1.81, p-value=0.031) of developing gout in hyperuricaemic individuals of Polynesian ancestry.

Conclusion: Here, we provide genetic as well as mechanistic evidence for the role of IL-37 in the pathogenesis of gout, and highlight the therapeutic potential of recombinant IL-37 for the treatment of gouty arthritis.

Download full-text PDF

Source
http://dx.doi.org/10.1136/annrheumdis-2019-216233DOI Listing

Publication Analysis

Top Keywords

recombinant il-37
12
anti-inflammatory cytokine
8
pathogenesis treatment
8
functional studies
8
role il-37
8
il-37 pathogenesis
8
cohort gout
8
predictive modelling
8
rare variants
8
therapeutic potential
8

Similar Publications

Interleukin-37 is a cytokine with potent immunosuppressive properties that has been shown to have potential to treat autoimmune and chronic inflammatory diseases, as well as certain types of cancer. IL-37 is a 19 kDa protein which interacts with proteins in receptor-dependent and receptor-independent pathways. The expression of the IL-37 protein cloned into the pET-28a vector was optimized in Rosetta 2(DE3) after comparing its expression with Rosetta-gami 2(DE3) and Rosetta 2(DE3) pLysS, which was then used for the large-scale production of IL-37.

View Article and Find Full Text PDF

Interleukin-37 Inhibits Interleukin-1β-Induced Articular Chondrocyte Apoptosis by Suppressing Reactive Oxygen Species.

Biomedicines

September 2024

Arthritis and Autoimmunity Research Center, Catholic University of Daegu, 33, Duryugongwon-ro 17-gil, Nam-gu, Daegu 42472, Republic of Korea.

: Chondrocyte apoptosis has been considered a crucial mechanism that is responsible for cartilage destruction in osteoarthritis (OA). The mechanism of interleukin-37 (IL-37) on chondrocyte apoptosis has not been clearly determined in the pathogenesis of OA. Here, we explored the role of IL-37 in the regulation of cellular apoptosis in rat chondrocytes stimulated by IL-1β.

View Article and Find Full Text PDF

Insights into the multifaceted role of interleukin-37 on human immune cell regulation.

Clin Immunol

November 2024

Department of Internal Medicine and Radboudumc Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, the Netherlands. Electronic address:

Autoinflammatory diseases, while having a variety of underlying causes, are mediated by dysfunctional innate immune responses. Therefore, standard treatments target innate cytokines or block their receptors. Despite excellent responses in some patients, first-line treatments fail in others, for reasons which remain to be understood.

View Article and Find Full Text PDF

Interleukin(IL)-37 attenuates isoproterenol (ISO)-induced cardiac hypertrophy by suppressing JAK2/STAT3-signaling associated inflammation and oxidative stress.

Int Immunopharmacol

December 2024

Department of Cardiovascular Medicine, The Second Hospital of Hebei Medical University, Heping West Road No. 215, Shijiazhuang 050000, China; Hebei Key Laboratory of Laboratory Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, China. Electronic address:

Background: Inflammation and oxidative stress have drawn more and more interest in the realm of cardiovascular disease. In many different disorders, IL-37 acts as an anti-inflammatory and suppressor of inflammation. This study aimed to investigate whether IL-37 could alleviate cardiac hypertrophy by reducing inflammation and oxidative stress.

View Article and Find Full Text PDF

: The pleiotropic effect of hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors (statins) is responsible for potent defense against inflammatory response. This study evaluated the inhibitory effects of HMG-CoA reductase inhibitors on the monosodium urate (MSU)-induced inflammatory response through the regulation of interleukin-37 (IL-37) expression. : Serum was collected from patients with gout ( = 40) and from healthy controls ( = 30).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!