Impact of ball-milling and ionic liquid pretreatments on pyrolysis kinetics and behaviors of crystalline cellulose.

Bioresour Technol

CAS Key Laboratory of Renewable Energy, Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China.

Published: June 2020

In this work, the kinetic mechanisms of pyrolysis of cellulose with different physical structures were illustrated. The crystalline cellulose showed better thermal stability and required higher energy for decomposition with more concentrated reactions due to the highly ordered structure. The crystallinity of the ball milling and ionic liquid pretreated cellulose decreased and the structure was relatively loose and disordered, thereby reducing the thermal stability, so the global activation energy of both samples decreased and the intensive reaction caused by the collapse of structure was alleviated. In fast pyrolysis, crystalline cellulose favored fast pyrolytic saccharification, and the highest levoglucosan yield reached 64.3 wt% at 400 °C. This research was helpful to deduce the influence of physical structure on the pyrolytic product distribution of cellulose, thereby providing useful information to promote the development of pyrolytic saccharification.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biortech.2020.123044DOI Listing

Publication Analysis

Top Keywords

crystalline cellulose
12
ionic liquid
8
thermal stability
8
pyrolytic saccharification
8
cellulose
6
impact ball-milling
4
ball-milling ionic
4
liquid pretreatments
4
pretreatments pyrolysis
4
pyrolysis kinetics
4

Similar Publications

Environmental concerns stemming from the widespread use of polyethylene packaging and the perishability of fresh products have promoted the development of antimicrobial biodegradable packaging films in preservation of vegetables. In this study, antimicrobial films based on chitosan (CS)-nisin (Ni)-nanocrystalline cellulose (NCC) were characterized, and its preservation effect applied to baby cabbage was investigated. The results suggest that 1 % CS-0.

View Article and Find Full Text PDF

This study explored a facile method for converting macadamia nutshells into bio-based nanomaterials, including cellulose nanofibers (CNFs) and lignin nanoparticles (LNPs), through deep eutectic solvent (DES) pretreatment coupled with a nanofabrication strategy. Comparisons of the physicochemical, morphological, and structural properties of the CNF and LNPs produced through acidic choline chloride/oxalic acid dihydrate (ACDES) and alkaline KCO/glycerol DES (ALDES) pretreatments were conducted using SEM, TEM, FTIR, XRD, TGA, GPC and 2D NMR. The CNFs obtained from ACDES pretreatment (ACCNFs) exhibited uniform and long filament-like structures with shorter whisker-like nanocrystals.

View Article and Find Full Text PDF

Photothermal/photodynamic synergistic antibacterial Nanocellulose film modified with antioxidant MXene-PANI Nanosheets.

Int J Biol Macromol

January 2025

Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China. Electronic address:

TEMPO-CNF film modified by two-dimension transition metal MXene has certain antibacterial properties. However, the problem of long-lasting stability greatly restricts the feasibility of long-term use of the composite film. Here, we introduced polyaniline (PANI) as a modifying molecule, which was electrostatically adsorbed on the surface of the MXene nanosheets to prevent its self-stacking and delay its oxidation.

View Article and Find Full Text PDF

An original design of a simple bioreactor was used to fabricate two tubular, 200 cm long BC structures by culturing B-11267 on a molasses medium. In addition, a tubular BC-based biocomposite with improved mechanical properties was obtained by combining cultivation on the molasses medium with in situ chemical modification by polyvinyl alcohol (PVA). Moreover, the present study investigated the BC production by the B-11267 strain on the media with different molasses concentrations under agitated culture conditions.

View Article and Find Full Text PDF

Effects of Multiple Treatments of Formic Acid on the Chemical Properties and Structural Features of Bamboo Powder.

Molecules

January 2025

Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Longpan Road 159, Nanjing 210037, China.

Under mild conditions, formic acid effectively separates the components of lignocellulose, removing the majority of the hemicellulose and lignin from the cellulose. However, it has not yet been determined if multiple treatments with fresh formic acid may totally remove hemicellulose and lignin. In this study, fresh formic acid was used to repeatedly pretreat the bamboo powder, and the effect of multiple treatments on the physicochemical structure of the bamboo powder was investigated using changes in fractions, enzymatic hydrolysis, hydrophilicity, cellulose crystallinity, and lignin structure.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!