Effect of sagittal pelvic tilt on joint stress distribution in hip dysplasia: A finite element analysis.

Clin Biomech (Bristol)

Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.

Published: April 2020

Background: Physiologic pelvic tilt can change acetabular orientation and coverage in patients with hip dysplasia. In this study, we aimed to clarify the impact of change in sagittal pelvic tilt on joint stress distribution in dysplastic hips.

Methods: We developed patient-specific finite element models of 21 dysplastic hips and 21 normal hips. The joint contact area, contact pressure, and equivalent stress of the acetabular cartilage were assessed at three pelvic tilt positions relative to the functional pelvic plane: 10° anterior tilt, no tilt, and 10° posterior tilt.

Findings: The mean contact area was 0.6-0.7 times smaller, the mean maximum contact pressure was 1.8-1.9 times higher, and the mean maximum equivalent stress was 1.3-2.8 times higher in dysplastic hips than in normal hips at all three pelvic positions. As the pelvis tilted from 10° anterior to 10° posterior, the mean contact area decreased, and the mean maximum contact pressure and median maximum equivalent stress increased. The latter two changes were more significant in dysplastic hips than in normal hips (total increment was 1.3 MPa vs. 0.4 MPa, P = 0.001, and 3.6 MPa vs. 0.4 MPa, P < 0.001, respectively). The mean equivalent stress increased in the anterosuperior acetabulum during posterior pelvic tilt in dysplastic and normal hips, while the change was not significant in the superior and posterosuperior acetabulum in both groups.

Interpretation: Sagittal pelvic tilt alters the loading environment and joint stress distribution of the hip joint and may impact the degeneration process in dysplastic hips.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.clinbiomech.2020.02.011DOI Listing

Publication Analysis

Top Keywords

pelvic tilt
16
dysplastic hips
12
hips normal
12
normal hips
12
contact area
12
contact pressure
12
equivalent stress
12
sagittal pelvic
8
tilt joint
8
joint stress
8

Similar Publications

Objective: The goal of this study was to compare the impact of using a lower thoracic (LT) versus upper lumbar (UL) level as the upper instrumented vertebra (UIV) on clinical and radiographic outcomes following minimally invasive surgery for adult spinal deformity.

Methods: A multicenter retrospective study design was used. Inclusion criteria were age ≥ 18 years, and one of the following: coronal Cobb angle > 20°, sagittal vertical axis > 50 mm, pelvic tilt > 20°, pelvic incidence-lumbar lordosis mismatch > 10°.

View Article and Find Full Text PDF

Background: Femoroacetabular impingement (FAI) is a well-recognized cause of hip pain in adults. The hip-spine relationship between the femur, pelvis, and lumbosacral spine has garnered recent attention in hip arthroplasty. However, the hip-spine relationship has not been well described in patients with FAI.

View Article and Find Full Text PDF

Among control methods for robotic exoskeletons, biologically inspired control based on central pattern generators (CPGs) offer a promising approach to generate natural and robust walking patterns. Compared to other approaches, like model-based and machine learning-based control, the biologically inspired control provides robustness to perturbations, requires less computational power, and does not need system models or large learning datasets. While it has shown effectiveness, a comprehensive evaluation of its user experience is lacking.

View Article and Find Full Text PDF

Gait disturbance is a common motor symptom in Angelman syndrome (AS), but its characteristics have been poorly studied quantitatively. This study aimed to analyze gait characteristics in school-age children with AS using three-dimensional gait analysis (3DGA). Patients with clinically and genetically confirmed AS and healthy children aged 6-15 years were included.

View Article and Find Full Text PDF

Lumbopelvic pain (LBP) is a prevalent condition during pregnancy, affecting a significant proportion of pregnant women. It arises from hormonal, biomechanical, and postural changes, often exacerbating discomfort and impairing quality of life. This study aimed to evaluate the effects of targeted motor control interventions focusing on sternal alignment on spinal alignment, pain, and muscle activity in pregnant women at risk of preterm birth.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!