The chemometric issues related to the application of non-targeted analysis for the detection of food frauds were analyzed employing discriminant analysis and a one-class classifier. The similarities and differences between the two methods were investigated. The results of classification are characterized by a set of indices called figures of merit. They comprehensively characterized the quality and reliability of classification. The principle is illustrated using an actual example of Oregano herbs adulteration. The informative region 9000-4000 cm of near-Infrared spectroscopy is used as analytical means. The results of the application of each method for Oregano data collection are presented. It is shown that the discriminant method is only partially appropriate for solving the authentication problem. One class classifier is a powerful and devoted for non-targeted analysis. The step by step analysis introduced in the paper can also be successfully utilized in apply for revealing of forgeries of various food products.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.foodchem.2020.126448DOI Listing

Publication Analysis

Top Keywords

non-targeted analysis
12
analysis
5
chemometric tools
4
tools food
4
food fraud
4
fraud detection
4
detection role
4
role target
4
target class
4
class non-targeted
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!