Lignin nanoparticles synthesis is among recent developments in lignin valorization especially for biomedical applications. In this study, a new technique where complete self-assembling of lignin was ensured by simultaneous solvent displacement and flash pH change was used to optimize particle size of blank lignin nanoparticles (BLNPs) for suitability in cell uptake along with maximized yield. To establish BLNPs as drug carrier, safety studies including hemocompatibility, cytotoxicity and elaborate genotoxicity studies on Drosophila melanogaster as a model organism were done. Finally, irinotecan loaded lignin nanoparticles (DLNPs) were synthesized to establish their drug carrying potential and thorough in vitro characterization was performed. BLNPs with controllable size (⁓152 nm), low polydispersity (<0.2), maximized yield (>65%), negative surface charge (-22 to -23 mV), spherical shape and smooth surface were obtained with acceptable %hemolysis (<2%). In vitro cytotoxicity studies revealed that BLNPs were significantly toxic (74.38 ± 4.74%) in human breast adenocarcinoma (MCF-7), slightly toxic (38.8 ± 4.70%) in human alveolar epithelial adenocarcinoma (A-549) and insignificantly toxic (15.89 ± 2.84%) to human embryonic kidney (HEK-293) cells. BLNPs showed concentration dependent early neuronal defects in Drosophila, but nuclei fragmentation and gut cell damage were absent. Sustained release DLNPs with high drug loading reduced the IC value of irinotecan by almost 3 folds.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2020.02.311 | DOI Listing |
Spectrochim Acta A Mol Biomol Spectrosc
December 2024
Saha's Spectroscopy Laboratory, Department of Physics, University of Allahabad, Prayagraj, India.
The present study demonstrates the applicability of non-destructive and rapid spectroscopic techniques, specifically laser-induced fluorescence, ultraviolet-visible, and confocal micro-Raman spectroscopy, as non-invasive, eco-friendly, and robust multi-compound analytical methods for assessing biochemical changes in maize seedling leaves resulting from the treatment of aluminium oxide nanoparticles. The recorded fluorescence spectrum of the leaves shows that the treatment of different concentration of aluminium oxide nanoparticles decreases the chlorophyll content as observed by the increase in fluorescence emission intensity ratio (FIR = I/I). The analysis of ultraviolet-visible absorption measurements reveals that the amount of chlorophyll a, chlorophyll b, total chlorophyll and carotenoid decrease for treated plants with respect to untreated seedlings.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA)State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China. Electronic address:
Lignin is a natural phenolic polymer characterized with renewable, sustainable and biocompatible, but yet remain underutilized. In the post-pandemic era, people are conventionally reusing mask but without any disinfections to prevent infection of virus in public places, which could lead to accumulation of bacteria and secondary infections. The development of antibacterial mask from lignin would simultaneously address the hygiene issues of used mask due to microbe accumulation and provide novel approach for lignin valorization.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Composites and Nanocomposites Center, Moroccan Foundation for Advanced Science, Innovation and Research, Rabat Design Center, Rue Mohamed El Jazouli, Madinat El Irfane, Rabat 10100, Morocco; Mohammed VI Polytechnic University, Lot 660 Hay Moulay Rachid, 43150 Ben Guerir, Morocco. Electronic address:
AMB Express
December 2024
Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma del Estado de México, El Cerrillo Piedras Blancas, 50295, Toluca, Estado de México, Mexico.
Reducing greenhouse gas (GHG) emissions from livestock is a crucial step towards mitigating the impact of climate change and improving environmental sustainability in agriculture. This study aimed to evaluate the effects of Yucca schidigera extract, chitosan, and chitosan nanoparticles as feed additives on in vitro GHG emissions and fermentation profiles in ruminal fluid from bulls. Total gas, CH, CO, and HS emissions (up to 48 h), rumen fermentation profiles, and CH conversion efficiency were measured using standard protocols.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
College of Chemistry and Materials Engineering, Zhejiang A & F University, Hangzhou 311300, PR China. Electronic address:
Conductive hydrogels have been showcased with substantial potential for soft wearable devices. However, the tedious preparation process and poor trade-off among overall properties, i.e.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!