Light absorption properties of elemental carbon (EC) and water-soluble brown carbon (WS-BrC) in the Kathmandu Valley, Nepal: A 5-year study.

Environ Pollut

CAS Center for Excellence in Tibetan Plateau Earth Sciences, Beijing, 100101, China; Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, CAS, Beijing, 100101, China.

Published: June 2020

This study presents a comprehensive analysis of organic carbon (OC), elemental carbon (EC), and particularly the light absorption characteristics of EC and water-soluble brown carbon (WS-BrC) in total suspended particles in the Kathmandu Valley from April 2013 to January 2018. The mean OC, EC, and water-soluble organic carbon (WSOC) concentrations were 34.8 ± 27.1, 9.9 ± 5.8, and 17.4 ± 12.5 μg m, respectively. A clear seasonal variation was observed for all carbonaceous components with higher concentrations occurring during colder months and lower concentrations in the monsoon season. The relatively low OC/EC ratio (3.6 ± 2.0) indicates fossil fuel combustion as the primary source of carbonaceous components. The optical attenuation (ATN) at 632 nm was significantly connected with EC loading (EC) below 15 μg cm but ceased as EC increased, reflecting the increased influence of the shadowing effect. The derived average mass absorption cross-section of EC (MAC) (7.0 ± 4.2 m g) is comparable to that of freshly emitted EC particles, further attesting that EC was mainly produced from local sources with minimal atmospheric aging processes. Relatively intensive coating with organic aerosols and/or salts (e.g., sulfate, nitrate) was probably the reason for the slightly higher MAC during the monsoon season, whereas increased biomass burning was a major factor leading to lower MAC in other seasons. The average MAC at 365 nm was 1.4 ± 0.3 m g with minimal seasonal variations. In contrast to MAC, biomass burning was the main reason for a higher MAC in the non-monsoon season. The relative light absorption contribution of WS-BrC to EC was 9.9% over the 300-700 nm wavelength range, with a slightly higher ratio (13.6%) in the pre-monsoon season. Therefore, both EC and WS-BrC should be considered in the study of optical properties and radiative forcing of carbonaceous aerosols in this region.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envpol.2020.114239DOI Listing

Publication Analysis

Top Keywords

light absorption
12
elemental carbon
8
water-soluble brown
8
brown carbon
8
carbon ws-brc
8
kathmandu valley
8
organic carbon
8
carbonaceous components
8
monsoon season
8
reason higher
8

Similar Publications

Enhance registration precision of transmission breast images utilizing improved Levenberg-Marquardt optimization algorithm with normalized cross-correlation.

Comput Biol Med

January 2025

State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin, 300072, China. Electronic address:

Transmission imaging may become a possible advance for breast cancer screening with non-invasive, cost-effective, and radiation-free approaches for early detection. Frame accumulation can successfully eliminate the issue of low SNR, low grayscale and poor quality in transmission image. However, frame accumulation accuracy can be diminished because of inherent human body instability during image acquisition and the light absorption characteristics of breast tissue, resulting in distorted and misplaced image sequences.

View Article and Find Full Text PDF

CS bonds mediated rapid charge transfer in hm-CN/CdS heterostructure for efficient photocatalytic CO reduction.

J Colloid Interface Sci

January 2025

School of the Environment and Safety Engineering, Institute for Energy Research, Jiangsu University, Zhenjiang 212013, Jiangsu, PR China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, Jiangsu, PR China. Electronic address:

The quest for stable and high-performance photocatalysts is pivotal in advancing the field of photocatalytic CO reduction. Traditional single-component semiconductors are often impeded by their inability to concurrently achieve a broad light absorption spectrum, efficient separation of photogenerated charge carriers, and enduring stability, thereby constraining their photocatalytic efficacy. In this study, we introduce an innovative hm-CN/CdS heterojunction that broadens the light absorption spectrum and significantly enhances the separation efficiency of photogenerated charge carriers.

View Article and Find Full Text PDF

This study investigates the electronic properties and photovoltaic (PV) performance of newly designed bithiophene-based dyes, focusing on their light harvesting efficiency (LHE), open-circuit voltage (V), fill factor (FF), and short-circuit current density (J).These new dyes are designed with the help of machine learning (ML) to design best donor acceptor designs. For this, we collect 2567 differenr electron donor groups and calculated their bandgap with the help of Random Forest (RF) Regression method.

View Article and Find Full Text PDF

This research utilizes density functional theory to investigate the ground and excited-state properties of a new series of organic dyes with D-π-A configurations (D1-D6) for their potential application in dye-sensitized solar cells. The study focuses on modifying these dyes using various functional groups as π-bridges to optimize their electronic properties and improve their efficiency as sensitizers in DSSCs. The frontier molecular orbitals (HOMO and LUMO) were analysed to evaluate electron transfer properties.

View Article and Find Full Text PDF

Nitrogen doped Carbon Quantum Dots (NCQDs) have been synthesized using most economical and easiest hydrothermal process. Here, N-phenyl orthophenylenediamine and citric acid were utilised as a source of nitrogen and carbon for the preparation of NCQDs. The synthesized NCQDs were characterized using experimental techniques like UV - Vis absorption, FT-IR, transmission electron microscopy (TEM), X-ray Diffraction (XRD), EDX, dynamic light scattering (DLS), fluorimeter and time resolved fluorescence spectroscopy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!