Hairiness, which is a phenotypic trait common among land plants, primarily affects the stem, leaf, and floral organs. Plant hairiness is associated with complex functions. For example, glume hairiness in wheat is related to the resistance to biotic and abiotic stresses, and may also influence human health. In the present study, two pairs of near-isogenic lines (NILs) for glume hairiness, which were derived from a cross between a Tibetan semi-wild wheat accession (Triticum aestivum ssp. tibetanum Q1028) and a common wheat cultivar (T. aestivum 'Zhengmai 9023'), underwent a glume transcriptome analysis. We detected 27,935 novel genes, of which 18,027 were annotated. Additionally, 488 and 600 differentially expressed genes (DEGs) were detected in NIL1 and NIL2, respectively, with 37 DEGs detected in both NIL pairs. Moreover, 987 and 1584 single nucleotide polymorphisms (SNPs) were detected in NIL1 and NIL2, respectively, with 39 SNPs detected in both NIL pairs, of which most were located in the Hairy glume (Hg) gene region on chromosome arm 1AS. The annotation of the DEGs with gene ontology terms revealed that genes associated with hairiness in Arabidopsis and rice were similarly enriched. The possible functions of these genes related to glume hairiness were examined. The study results provide useful information for identifying candidate genes and the fine-mapping of Hg in the wheat genome.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.gene.2020.144517 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!