The adaptive immune response in jawed vertebrates relies on the huge diversity and specificity of the B cell and T cell antigen receptors, the immunoglobulins (IG) or antibodies and the T cell receptors (TR), respectively. The high level of diversity has represented a barrier to a comprehensive analysis of the adaptive immune response before the emergence of high-throughput sequencing (HTS) technologies. The size and complexity of HTS data requires the generation of novel computational and analytical approaches, which are transforming how the adaptive immune responses are deciphered to understand the clonal dynamics and properties of antigen-specific B and T cells in response to different kind of antigens. This exciting and rapidly evolving field is not only impacting human and clinical immunology but also comparative immunology. We are now closer to understanding the evolution of adaptive immune response in jawed vertebrates. This review provides an overview about classical and current strategies developed to assess the IG/TR diversity and their applications in basic and clinical immunology.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.imlet.2020.02.013 | DOI Listing |
PLoS Comput Biol
January 2025
Genesupport, Avenue de Sévelin 18, Lausanne, Switzerland.
Catalysis and specifically autocatalysis are the quintessential building blocks of life. Yet, although autocatalytic networks are necessary, they are not sufficient for the emergence of life-like properties, such as replication and adaptation. The ultimate and potentially fatal threat faced by molecular replicators is parasitism; if the polymerase error rate exceeds a critical threshold, even the fittest molecular species will disappear.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
University of Chicago Division of the Physical Sciences, chemistry, UNITED STATES OF AMERICA.
Immune checkpoint blockade (ICB) has revolutionized the treatment of many cancers by leveraging the immune system to combat malignancies. However, its efficacy is limited by the immunosuppressive tumor microenvironment and other regulatory mechanisms of the immune system. Innate immune modulators (IIMs) provide potent immune activation to complement adaptive immune responses and help overcome resistance to ICB.
View Article and Find Full Text PDFActa Neurochir (Wien)
January 2025
Department of Neurosurgery, University Hospital Eppendorf, Hamburg, Germany.
In recent years, it has been increasingly recognized that tumor growth relies not only on support from the surrounding microenvironment but also on the tumors capacity to adapt to - and actively manipulate - its niche. While targeting angiogenesis and modulating the local immune environment have been explored as therapeutic approaches, these strategies have yet to yield effective treatments for brain tumors and remain under refinement. More recently, the nervous system itself has been explored as a critical environmental support for cancer, with extensive neuro-tumoral interactions observed both intracranially and in extracranial sites containing neural components.
View Article and Find Full Text PDFClin Rev Allergy Immunol
December 2024
Department of Dermatology, Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, People's Republic of China.
The switch/sucrose non-fermentable (SWI/SNF) chromatin remodeling complexes (also referred to as BAF complexes) are composed of multiple subunits, which regulate the nucleosome translocation and chromatin accessibility. In recent years, significant advancements have been made in understanding mutated genes encoding subunits of the SWI/SNF complexes in cancer biology. Nevertheless, the role of SWI/SNF complexes in immune response and inflammatory diseases continues to attract significant attention.
View Article and Find Full Text PDFCancer Immunol Immunother
January 2025
Department of Otorhinolaryngology, Head and Neck Surgery, Ulm University Medical Center, Ulm, Germany.
Head and neck squamous cell carcinoma (HNSCC) is the seventh most common cancer worldwide with a poor prognosis for survival. Risk factors include alcohol and tobacco abuse and infection with human papilloma virus (HPV). To enhance anti-tumor immune responses immunotherapeutic approaches are approved for recurrent metastatic disease but only approx.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!