A multiple constraint method (MCM) specifically designed to accommodate the uncertainty of array tilt is developed for matched field processing (MFP). Combining the MCM with the white noise gain constraint method results in a processor that is tolerant to both array tilt and environmental mismatch. Experimental results verify the robustness of the proposed MFP to localize and track a surface ship radiating broadband noise (200-500 Hz), using a 56-m long vertical array with tilt in approximately 100-m deep shallow water.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1121/10.0000784 | DOI Listing |
Micromachines (Basel)
December 2024
Institute of Nanostructure Technologies and Analytics (INA), Technological Electronics Department and Center for Interdisciplinary Nanostructure Science and Technology (CINSaT), University of Kassel, Heinrich-Plett-Straße 40, 34132 Kassel, Germany.
Millions of electrostatically actuatable micromirror arrays have been arranged in between windowpanes in inert gas environments, enabling active daylighting in buildings for illumination and climatization. MEMS smart windows can reduce energy consumption significantly. However, to allow personalized light steering for arbitrary user positions with high flexibility, two main limitations must be overcome: first, limited tuning angle spans by MEMS pull-in effects; and second, the lack of a second orthogonal tuning angle, which is highly required.
View Article and Find Full Text PDFMicromachines (Basel)
December 2024
School of Optoelectronic Engineering, Changchun University of Science and Technology, Changchun 130022, China.
In this paper, we present a method based on the conjugate image principle and micro-nano optics to detect tilt aberrations of a phased fiber laser array system. A co-aperture optics system was adapted to detect the tilt aberrations of a seven-element phased fiber laser array system simultaneously. A Kepler telescope was designed to construct the conjugate relation between the exit pupil of a fiber optic laser array system and a microlens array and also to match the size of the seven beams and the microlens array.
View Article and Find Full Text PDFSci Rep
January 2025
School of Physics, Ningxia University, Yinchuan, 750021, China.
Optimizing the installation parameters of photovoltaic panels in a photovoltaic array to reduce dust accumulation, thereby enhancing their power generation, is a crucial research topic in the construction of solar power stations in desert regions. Utilizing a series of wind tunnel experiments on a photovoltaic array comprising four equally sized panels, this study assessed how variations in tilt angle, mounting height, spacing, and incoming flow direction influence both the accumulation mass of dust and the particle size distribution in a photovoltaic array. The results indicate that the dust accumulation on the first panel exponential growth with increasing tilt angle, incoming flow angles, and height, while subsequent panels displayed a trend of initial increase followed by a decrease, with a maximum increasing ratio achieved at specific installation configurations, the difference of dust mass on each panel can even be several times.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Electrical and Computer Engineering, Wolkite University, 07, Wolkite, Ethiopia.
The optimal integration of Photovoltaic (PV) systems into an electric grid is dependent upon the total output power of the PV system. To optimize the output power of a PV system, the modules must be positioned at an optimal tilt angle (OTA) to maximize the absorption of solar radiations. This research focused on a mathematical model to optimize incident solar radiation.
View Article and Find Full Text PDFSmall
January 2025
Department of Mechanical and Aerospace Engineering, University of California Los Angeles, Los Angeles, CA, 90095, USA.
A new device termed "Optomagnetic Micromirror Arrays" (OMA) is demonstrated capable of mapping the stiffness distribution of biomimetic materials across a 5.1 mm × 7.2 mm field of view with cellular resolution.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!