The activities of infaunal organisms, including feeding, locomotion, and home building, alter sediment physical properties including grain size and sorting, porosity, bulk density, permeability, packing, tortuosity, and consolidation behavior. These activities are also known to affect the acoustic properties of marine sediments, although previous studies have demonstrated complicated relationships between infaunal activities and geoacoustic properties. To avoid difficulties associated with real animals, whose exact locations and activities are unknown, this work uses artificial burrows and simulates infaunal activities such as irrigation, compaction, and tube building in controlled laboratory experiments. The results show statistically significant changes in sound speed and attenuation over a frequency range of 100-400 kHz, corresponding to wavelengths on the order of the burrow diameter. The greatest effects were observed for tubes constructed of hard shells which increased the attenuation by ∼30 dB m across the measurement band. These results highlight the importance of biogenic hard structures such as tubes on sound attenuation and suggest that organisms that create hard structures may be good targets for acoustic mapping of infaunal abundance and distribution.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1121/10.0000558 | DOI Listing |
Methods Protoc
December 2024
Department of Natural Sciences, University of South Carolina Beaufort, 1 University Boulevard, Bluffton, SC 29909, USA.
The multifunctional catalytic hemoglobin from the terebellid polychaete , also named dehaloperoxidase (DHP), utilizes the typical oxygen transport function in addition to four observed activities involved in substrate oxidation. The multifunctional ability of DHP is presently a rare observation, and there exists a limitation for how novel dehaloperoxidases can be identified from macrobenthic infauna. In order to discover more infaunal DHP-bearing candidates, we have devised a facilitated method for an accurate taxonomic identification that places visual and molecular taxonomic approaches in parallel.
View Article and Find Full Text PDFMar Pollut Bull
January 2025
University of Gdańsk, Faculty of Oceanography and Geography, Gdynia, Poland.
Carbon capture and storage in sub-seabed geological reservoirs is now officially included in the atmospheric CO emissions reduction policy and meets the agenda of Sustainable Development Goals (SDGs). Over the last few years biological risk assessment studies have delivered substantial empirical data on possible consequences of CO leakages from underwater storage sites on benthic systems. Current knowledge on Carbon Capture and Storage CCS associated risks is limited to marine systems.
View Article and Find Full Text PDFMar Environ Res
November 2024
Department of Biology, University of Pisa, CoNISMa, Via Derna 1, 56126, Pisa, Italy; Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy.
Marine bioconstructions and their ecological functions are increasingly threatened by compounded natural disturbances and direct and indirect impacts of anthropogenic activities. Through a manipulative experiment in the field, we assessed the response of intertidal biogenic patches built by the honeycomb worm, Sabellaria alveolata, to combined disturbances. Repeated battering events, simulating those associated with waves, were applied on intact or previously damaged bioconstructions, mimicking those impacted by harvesting of infaunal organisms.
View Article and Find Full Text PDFMar Pollut Bull
January 2024
Department of Biological Sciences, University of New Brunswick, Saint John, NB, Canada.
Sediment contamination can be elevated in ports, harbours, and estuaries with legacies of exploitation, negatively impacting infaunal invertebrate communities. Saint John Harbour (45.25° N, 66.
View Article and Find Full Text PDFSci Total Environ
January 2024
Norwegian Petroleum Directorate, N-9407 Harstad, Norway.
Due to climate change, decreasing ice cover and increasing industrial activities, Arctic marine ecosystems are expected to face higher levels of anthropogenic stress. To sustain healthy and productive ocean ecosystems, it is imperative to build baseline data to assess future climatic and environmental changes. Herein, a natural oil seep site offshore western Svalbard (Prins Karls Forland, PKF, 80-100 m water depth), discovered using satellite radar images, was investigated using an extensive multiscale and multisource geospatial dataset collected by satellite, aerial, floating, and underwater platforms.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!