Interaction between glyphosate and dissolved phosphorus on bacterial and eukaryotic communities from river biofilms.

Sci Total Environ

Université Clermont Auvergne, CNRS, Laboratoire Microorganismes: Génome et Environnement (LMGE), F-63000 Clermont-Ferrand, France.

Published: June 2020

Since the capacity of river biofilms to degrade glyphosate has been proven to increase when the availability of dissolved phosphorus (P) in water decreases, the present study investigates the diversity responses of bacterial and eukaryotic microbial communities from biofilms in a search for glyphosate-degrader candidates. Glyphosate and P interactions were observed for eukaryotic communities, the highest community richness and diversity being preserved at low concentrations of glyphosate and P. This trend marked by glyphosate was also observed in the structure of eukaryotic communities. Therefore, phosphorus and glyphosate had a synergistic effect in decreasing the richness and diversity of eukaryotes species in biofilms. However, species richness and diversity in bacterial communities were not affected by glyphosate, though shifts in the structure of these communities were concomitant with the degradation of the herbicide. Bacterial communities capable of using glyphosate as P source were characterized by increases in the relative abundance of certain Bacteroidetes, Chloroflexi, Cyanobacteria, Planctomycetes and alpha-Proteobacteria members. Glyphosate-degrader candidates found in natural river biofilms can be further isolated for better understanding of glyphosate degradation pathways, and used as bioremediation strategies in heavily contaminated sites.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2020.137463DOI Listing

Publication Analysis

Top Keywords

eukaryotic communities
12
river biofilms
12
richness diversity
12
dissolved phosphorus
8
bacterial eukaryotic
8
glyphosate
8
glyphosate-degrader candidates
8
bacterial communities
8
communities
7
biofilms
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!