Finite dose experiments represent clinical use wherein depletion of dose, evaporation of excipients, and gradual change in vehicle composition may occur. In the present study, we attempted a mathematical approach for predicting skin permeation and concentration of a cosmetic active, rhododendrol (RD), from complex vehicle-based formulations applied in finite dose. In vitro skin permeation and concentration studies of RD were conducted from formulations containing water and polyols with concentrations ranging from 10 to 100% under infinite and finite dose conditions using vertical Franz diffusion cells. Observed data for skin permeation and the viable epidermis and dermis (VED) concentration of RD were estimated by the differential equations under Fick's second law of diffusion together with water evaporation kinetics and changes in the partition coefficient from vehicles to the stratum corneum. As a result, a goodness-of-fit was observed allowing accurate estimation of skin permeation and VED concentration of RD. This mathematical approach could become a useful tool to estimate the skin permeation and concentration of actives from topical formulation applied in finite dose conditions likened in actual use.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijpharm.2020.119186DOI Listing

Publication Analysis

Top Keywords

skin permeation
24
finite dose
20
permeation concentration
16
applied finite
12
mathematical approach
8
dose conditions
8
ved concentration
8
permeation
6
concentration
6
dose
6

Similar Publications

Background/objectives: The objective of this paper is to design a novel film-forming system (FFS) based on Eudragit E PO (EuE) polymeric solutions, differing in volatile solvents (i.e., isopropanol and ethanol) and plasticizers (i.

View Article and Find Full Text PDF

: The demand for a safe compound for hyperpigmentation is continuously increasing. Bioactive compounds such as thymoquinone (TQ) and ascorbic acid (AA) induce inhibition of melanogenesis with a high safety profile. The aim of this study was to design and evaluate spanlastics gel loaded with bioactive agents, TQ and AA, for the management of hyperpigmentation.

View Article and Find Full Text PDF

: Laurocapram (Azone) attracted attention 40 years ago as a compound with the highest skin-penetration-enhancing effect at that time; however, its development was shelved due to strong skin irritation. We had already prepared and tested an ante-enhancer (IL-Azone), an ionic liquid (IL) with a similar structure to Azone, consisting of ε-caprolactam and myristic acid, as an enhancer candidate that maintains the high skin-penetration-enhancing effect of Azone with low skin irritation. In the present study, fatty acids with different carbon numbers (caprylic acid: C8, capric acid: C10, lauric acid: C12, myristic acid: C14, and oleic acid: C18:1) were selected and used with ε-caprolactam to prepare various IL-Azones in the search for a more effective IL-Azone.

View Article and Find Full Text PDF

Spironolactone (SP), an aldosterone inhibitor widely used to treat androgen-dependent disorders such as acne, hirsutism, and alopecia, has demonstrated therapeutic potential in both oral and topical formulations. However, SP's low solubility and poor bioavailability in conventional formulations have driven the development of novel nanocarriers to enhance its efficacy. This review systematically examines recent advancements in SP-loaded nanocarriers, including lipid nanoparticles (LNPs), vesicular nanoparticles (VNPs), polymeric nanoparticles (PNPs), and nanofibers (NFs).

View Article and Find Full Text PDF

: This study aimed to evaluate the safety and efficacy of chitosan-based bioadhesive films for facilitating the topical delivery of curcumin in skin cancer treatment, addressing the pharmacokinetic limitations associated with oral administration. : The films, which incorporated curcumin, were formulated using varying proportions of chitosan, polyvinyl alcohol, Poloxamer 407, and propylene glycol. These films were assessed for stability, drug release, in vitro skin permeation, cell viability (with and without radiotherapy), and skin irritation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!