A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Musk Ketone Induces Neural Stem Cell Proliferation and Differentiation in Cerebral Ischemia via Activation of the PI3K/Akt Signaling Pathway. | LitMetric

Traditional Chinese medicine has been reported to influence the proliferation and differentiation of neural stem cells (NSCs) that may be protective against nervous system diseases. Recent evidence indicates the importance of musk ketone in nerve recovery and preventing secondary damage after cerebral ischemic injury. A middle cerebral artery occlusion (MCAO) rat model was established by a transient filament model, and rats were treated with musk ketone (0.9 or 1.8 μM). Next, an in vitro oxygen-glucose deprivation (OGD) cell model was established to study the effect of musk ketone on the proliferation and differentiation of NSCs. To determine the potential mechanisms of musk ketone involved in activities of NSCs, the effect of musk ketone on the PI3K/Akt signaling pathway activation was assessed. Furthermore, NSCs were treated with musk ketone in the presence of PI3K/Akt inhibitor Akti-1/2 to examine their roles on NSC proliferation and differentiation. Musk ketone reduced cerebral ischemic injury in a dose-dependent manner in rats. In addition, NSCs treated with musk ketone showed enhanced proliferation and differentiation along with increased PI3K/Akt signaling pathway activation. The effects of muck ketone were reversed by Akti-1/2. Altogether, musk ketone promoted NSC proliferation and differentiation and protected against cerebral ischemia by activating the PI3K/Akt signaling pathway, highlighting the potential of musk ketone as a physiologically validated approach for the treatment of cerebral ischemia.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuroscience.2020.02.031DOI Listing

Publication Analysis

Top Keywords

musk ketone
44
proliferation differentiation
24
pi3k/akt signaling
16
signaling pathway
16
cerebral ischemia
12
treated musk
12
musk
11
ketone
11
neural stem
8
cerebral ischemic
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!