The biotrophic fungus Ustilago maydis causes the smut disease of maize. The interaction with its host and induction of characteristic tumors are governed largely by secreted effectors whose function is mostly unknown. To identify effectors with a prominent role in virulence, we used RNA sequencing and found that the gene sta1 is upregulated during early stages of infection. We characterized Sta1 by comparative genomics, reverse genetics, protein localization, stress assays, and microscopy. sta1 mutants show a dramatic reduction of virulence and show altered colonization of tissue neighboring the vascular bundles. Functional orthologues of Sta1 are found in related smut pathogens infecting monocot and dicot plants. Sta1 is secreted by budding cells but is attached to the cell wall of filamentous hyphae. Upon constitutive expression of Sta1, fungal filaments become susceptible to Congo red, β-glucanase, and chitinase, suggesting that Sta1 alters the structure of the fungal cell wall. Constitutive or delayed expression of sta1 during plant colonization negatively impacts on virulence. Our results suggest that Sta1 is a novel kind of effector, which needs to modify the hyphal cell wall to allow hyphae to be accommodated in tissue next to the vascular bundles.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/nph.16508 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!