Phospholipid scramblases catalyze the rapid trans-bilayer movement of lipids down their concentration gradients. This process is essential for numerous cellular signaling functions including cell fusion, blood coagulation, and apoptosis. The importance of scramblases is highlighted by the number of human diseases caused by mutations in these proteins. Because of their indispensable function, it is essential to understand and characterize the molecular function of phospholipid scramblases. Powerful tools to measure lipid transport in cells are available. However, these approaches provide limited mechanistic insights into the molecular bases of scrambling. Here we describe in detail an in vitro phospholipid scramblase assay and the accompanying analysis which allows for determination of the macroscopic rate constants associated with phospholipid scrambling. Notably, members of the TMEM16 family of scramblases also function as nonselective ion channels. To better understand the physiological relevance of this channel function as well as its relationship to the scrambling activity of the TMEM16s we also describe in detail an in vitro flux assay to measure nonselective channel activity. Together, these two assays can be used to investigate the dual activities of the TMEM16 scramblases/nonselective channels.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7297447 | PMC |
http://dx.doi.org/10.1007/978-1-0716-0373-4_15 | DOI Listing |
Proc Jpn Acad Ser B Phys Biol Sci
January 2025
Institute for Genetic Medicine, Hokkaido University, Sapporo, Hokkaido, Japan.
The formation of autophagosomes is a pivotal step in autophagy, a lysosomal degradation system that plays a crucial role in maintaining cellular homeostasis. After autophagy induction, phase separation of the autophagy-related (Atg) 1 complex occurs, facilitating the gathering of Atg proteins and organizes the autophagosome formation site, where the initial isolation membrane (IM)/phagophore is generated. The IM then expands after receiving phospholipids from endomembranes such as the endoplasmic reticulum.
View Article and Find Full Text PDFMethods Mol Biol
December 2024
Institute of Biophysics, Consiglio Nazionale delle Ricerche, Genoa, Italy.
In recent years, the elucidation of molecular mechanisms underlying lipid scrambling has raised significant attention to its implications in various physiological processes, such as blood coagulation, viral infection, cell fusion processes, and removal of apoptotic cells. This chapter focuses on a HEK293 cell-based assay tailored to assess the lipid scrambling activity of the Ca-activated scramblases of the TMEM16/Anoctamin family. It relies on the capacity of Annexin-V to detect the presence of negatively charged lipids and, in particular, phosphatidylserine, on the extracellular surface of the plasma membrane.
View Article and Find Full Text PDFFolia Biol (Praha)
December 2024
Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia.
Docosahexaenoic acid (DHA) is an omega-3 polyunsaturated fatty acid with promising anticancer potential. Anaemia is a frequent adverse effect of anticancer treatment caused in part by eryptosis and haemolysis. Thus, it is important to investigate the role of DHA in red blood cell (RBC) death.
View Article and Find Full Text PDFElife
November 2024
Department of Biochemistry, Duke University School of Medicine, Durham, United States.
The calcium-activated TMEM16 proteins and the mechanosensitive/osmolarity-activated OSCA/TMEM63 proteins belong to the Transmembrane Channel/Scramblase (TCS) superfamily. Within the superfamily, OSCA/TMEM63 proteins, as well as TMEM16A and TMEM16B, are thought to function solely as ion channels. However, most TMEM16 members, including TMEM16F, maintain an additional function as scramblases, rapidly exchanging phospholipids between leaflets of the membrane.
View Article and Find Full Text PDFNat Struct Mol Biol
October 2024
Department of Medical Chemistry, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan.
Phospholipids are asymmetrically distributed in the plasma membrane (PM), with phosphatidylcholine and sphingomyelin abundant in the outer leaflet. However, the mechanisms by which their distribution is regulated remain unclear. Here, we show that transmembrane protein 63B (TMEM63B) functions as a membrane structure-responsive lipid scramblase localized at the PM and lysosomes, activating bidirectional lipid translocation upon changes in membrane curvature and thickness.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!