Bacteria use flagella as propellers to move to favorable environments. Escherichia albertii, a growing cause of foodborne illness and diarrhea, is reportedly non-motile and lacks flagella on its surface. Here, we report that 27 out of 59 E. albertii strains, collected mainly from humans and birds, showed swimming motility when cultured at low osmotic pressure. The biosynthesis of flagella in E. albertii cells was induced under ambient temperature and hypoosmotic pressure: conditions which resemble aquatic environments. Flagellar induction increased E. albertii survival in the intestinal epithelial cell culture containing gentamicin. Although genes involved in chemotaxis are not present in the E. albertii genome, the addition of glutamic acid, an amino acid known to regulate the internal cell osmolarity, augmented the proportion of swimming cells by 35-fold. These results suggest that flagellar biosynthesis and motility in E. albertii cells are controlled by their internal and external osmolarity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7048735 | PMC |
http://dx.doi.org/10.1038/s42003-020-0816-5 | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
Chinese Academy of Sciences Key Laboratory of Tropical Marine Bio Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, Guangdong Provincial Observation and Research Station for Coastal Upwelling Ecosystem, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 511458, China.
Rotation of the bacterial flagellum, the first identified biological rotary machine, is driven by its stator units. Knowledge gained about the function of stator units has increasingly led to studies of rotary complexes in different cellular pathways. Here, we report that a tetrameric PilZ family protein, FlgX, is a structural component underneath the stator units in the flagellar motor of .
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Macromolecular Science, Graduate School of Science, Osaka University, Toyonaka 560-0043, Japan.
Many bacteria swim in liquid or swarm on surface using the flagellum rotated by a motor driven by specific ion flow. The motor consists of the rotor and stator, and the stator converts the energy of ion flow to mechanical rotation. However, the ion pathway and the mechanism of stator rotation coupled with specific ion flow are still obscure.
View Article and Find Full Text PDFArch Microbiol
January 2025
Department of Critical Care Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, 637000, PR China.
Vibrio parahaemolyticus propels itself through liquids using a polar flagellum and efficiently swarms across surfaces or viscous environments with the aid of lateral flagella. H-NS plays a negative role in the swarming motility of V. parahaemolyticus by directly repressing the transcription of the lateral flagellin gene lafA.
View Article and Find Full Text PDFBiol Reprod
January 2025
Center for Reproductive Medicine, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China.
Asthenozoospermia, a prevalent contributor to male infertility, exhibits a multifaceted pathogenesis. This study identified a significant downregulation in sperm dynein heavy chain 3 (DNAH3) protein levels in individuals with asthenozoospermia. To elucidate the role of DNAH3 in asthenozoospermia, we constructed Dnah3-knockout (KO) mice, which exhibited asthenozoospermia and sterility.
View Article and Find Full Text PDFMicroorganisms
December 2024
Department of Biochemistry, Faculty of Science, Kasetsart University, 50 Ngam Wong Wan, Chatuchak, Bangkok 10900, Thailand.
Vibriosis caused by is a major problem in aquatic animals, particularly brown marble groupers (). biotype I has recently been isolated and classified into subgroups SUKU_G1, SUKU_G2, and SUKU_G3 according to the different types of virulence genes. In a previous study, we have shown that biotype I strains were classified into three subgroups according to the different types of virulence genes, which exhibited different phenotypes in terms of growth rate and virulence.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!