Sensitive and specific diagnostic and prognostic biomarkers for prostate cancer (PCa) are urgently needed. Urine samples are a non-invasive means to obtain abundant and readily accessible "liquid biopsies". Herein we used urine liquid biopsies to identify and characterize a novel group of urine-enriched RNAs and metabolites in patients with PCa and normal individuals with or without benign prostatic disease. Differentially expressed RNAs were identified in urine samples by deep sequencing and metabolites in urine were measured by mass spectrometry. mRNA and metabolite profiles were distinct in patients with benign and malignant disease. Integrated analysis of urinary gene expression and metabolite signatures unveiled an aberrant glutamate metabolism and tricarboxylic acid (TCA) cycle node in prostate cancer-derived cells. Functional validation supported a role for glutamate metabolism and glutamate oxaloacetate transaminase 1 (GOT1)-dependent redox balance in PCa, which could be exploited for novel biomarkers and therapies. In this study, we discovered cancer-specific changes in urinary RNAs and metabolites, paving the way for the development of sensitive and specific urinary PCa diagnostic biomarkers either alone or in combination. Our methodology was based on single void urine samples (i.e., without prostatic massage). The integrated analysis of metabolomic and transcriptomic data from these liquid biopsies revealed a glutamate metabolism and tricarboxylic acid cycle node that was specific to prostate-derived cancer cells and cancer-specific metabolic changes in urine.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7048821PMC
http://dx.doi.org/10.1038/s41598-020-60616-zDOI Listing

Publication Analysis

Top Keywords

liquid biopsies
12
urine samples
12
glutamate metabolism
12
urine liquid
8
prostate cancer
8
sensitive specific
8
rnas metabolites
8
integrated analysis
8
metabolism tricarboxylic
8
tricarboxylic acid
8

Similar Publications

Liquid biopsy is an efficient diagnostic/prognostic tool for tumor-derived component detection in peripheral circulation and other body fluids. The rapid assessment of liquid biopsy techniques facilitates early cancer diagnosis and prognosis. Early and precise detection of tumor biomarkers provides crucial information about the tumor that guides clinicians towards effective personalized medicine.

View Article and Find Full Text PDF

Liquid biopsy (LB) involves the analysis of circulating tumour-derived DNA (ctDNA), providing a minimally invasive method for gathering both quantitative and qualitative information. Genomic analysis of ctDNA through next-generation sequencing (NGS) enables comprehensive genetic profiling of tumours, including non-driver alterations that offer prognostic insights. LB can be applied in both early-stage disease settings, for the diagnosis and monitoring of minimal residual disease (MRD), and advanced disease settings, for monitoring treatment response and understanding the mechanisms behind disease progression and tumour heterogeneity.

View Article and Find Full Text PDF

Leveraging Saliva for Insights into Head and Neck Cancer.

Int J Mol Sci

December 2024

Department of Hematology and Medical Oncology, Emory University, Atlanta, GA 30322, USA.

Head and neck cancer (HNC) represents a heterogeneous group of malignancies with increasing global incidence and notable mortality. Early detection is essential for improving survival rates and minimizing recurrence; however, existing diagnostic methods are often invasive and complex. There is a need for noninvasive and more effective approaches for early detection and real-time monitoring of HNC.

View Article and Find Full Text PDF

Organ shortage remains a significant challenge in transplantology, prompting efforts to maximize the use of available organs and expand the donor pool, including through extended criteria donors (ECDs). However, ECD kidney recipients often face poorer outcomes, including a higher incidence of delayed graft function (DGF), which is linked to worse graft performance, reduced long-term survival, and an increased need for interventions like dialysis. This underscores the urgent need for strategies to improve early DGF risk assessment and optimize post-transplant management for high-risk patients.

View Article and Find Full Text PDF

Circulating tumor DNA (ctDNA) is a biomarker that could potentially improve the survival rate of ovarian cancer (OC), e.g., by monitoring treatment response and early relapse detection.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!