Incipient groundwater salinization has been identified in many arid and semi-arid regions where groundwater is increasingly used for irrigation, but the dominant processes at stake in such context are yet uncertain. Groundwater solutes originates from various sources such as atmospheric inputs, rock dissolution and fertilizer residues, and their concentration is controlled by hydrological processes, in particular evapotranspiration. Here, we propose a deconvolution method to identify the sources and processes governing the groundwater Chloride concentration in agricultural catchments, using the relative variations of Sodium and Chloride and using a neighbouring pristine catchment as a reference for the release rate of Na by weathering. We applied the deconvolution method to the case of the Kabini Critical Zone Observatory, South India, where groundwater was sampled in 188 farm tubewells in the semi-arid catchment of Berambadi and in 5 piezometers in the pristine catchment of Mule Hole. In Berambadi, groundwater composition displayed a large spatial variability with Cl contents spanning 3 orders of magnitude. The results showed that the concentration factor due to evapotranspiration was on average about 3 times more than in the natural system, with higher values in the valley bottoms with deep Vertisols. Linked with this process, large concentration of Chloride originating from rain was found only in these areas. At the catchment scale, about 60 percent of the Chloride found in groundwater originates from fertilizer inputs. These results show that Potassium fertilization as KCl is an important source of groundwater salinization in semi-arid context, and stress that identifying dominant drivers is crucial for designing efficient mitigation policies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7048856PMC
http://dx.doi.org/10.1038/s41598-020-60365-zDOI Listing

Publication Analysis

Top Keywords

groundwater
9
groundwater salinization
8
deconvolution method
8
pristine catchment
8
potash fertilizer
4
fertilizer promotes
4
promotes incipient
4
incipient salinization
4
salinization groundwater
4
groundwater irrigated
4

Similar Publications

Groundwater is an essential drinking water source for humans. However, improper groundwater management leads to fecal contamination and waterborne diseases caused by viral pathogens. Therefore, this study aimed to investigate norovirus (NoV) contamination by conducting nationwide monitoring over five years (2019-2023).

View Article and Find Full Text PDF

Methylene blue is a cationic organic dye commonly found in wastewater, groundwater, and surface water due to industrial discharge into the environment. This emerging pollutant is notably persistent and can pose risks to both human health and the environment. In this study, we developed a Surface Plasmon Resonance Biosensor employing a BK7 prism coated with 3 nm chromium and 50 nm of gold in the Kretschmann configuration, specifically for the detection of methylene blue.

View Article and Find Full Text PDF

The rapid development of the global chemical industry has led to widespread groundwater contamination, with frequent pollution incidents posing severe threats to water safety. However, there has been insufficient assessment of the health risks posed by chlorinated hydrocarbon contamination in groundwater around chemical industrial parks. This study evaluates the chlorinated hydrocarbon contamination in groundwater at a chemical park and conducts a multi-pathway health risk assessment, identifying the key risk pollutants.

View Article and Find Full Text PDF

Geogenic arsenic (As) contamination in groundwater poses a significant public health risk in many regions worldwide. Previous studies have reported hydrogen peroxide (HO) concentrations ranging from 5.8 to 96 μmol L in rainwater, which may contribute to the oxidation and removal of As.

View Article and Find Full Text PDF

Contained arsenic (As) and unsafe brackish groundwater irrigation can lead to serious As pollution and increase the ecological risk in cultivated soils. However, little is known about how Fe oxides and microbes affect As migration during soil irrigation processes involving arsenic-contaminated brackish groundwater. In this study, the samples (porewater and soil) were collected through the dynamic soil column experiments to explore the As migration process and its effect factors during soil irrigation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!