The structure-specific endonuclease XPF-ERCC1 participates in multiple DNA damage repair pathways including nucleotide excision repair (NER) and inter-strand crosslink repair (ICLR). How XPF-ERCC1 is catalytically activated by DNA junction substrates is not currently understood. Here we report cryo-electron microscopy structures of both DNA-free and DNA-bound human XPF-ERCC1. DNA-free XPF-ERCC1 adopts an auto-inhibited conformation in which the XPF helical domain masks the ERCC1 (HhH) domain and restricts access to the XPF catalytic site. DNA junction engagement releases the ERCC1 (HhH) domain to couple with the XPF-ERCC1 nuclease/nuclease-like domains. Structure-function data indicate xeroderma pigmentosum patient mutations frequently compromise the structural integrity of XPF-ERCC1. Fanconi anaemia patient mutations in XPF often display substantial in-vitro activity but are resistant to activation by ICLR recruitment factor SLX4. Our data provide insights into XPF-ERCC1 architecture and catalytic activation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7048804PMC
http://dx.doi.org/10.1038/s41467-020-14856-2DOI Listing

Publication Analysis

Top Keywords

xpf-ercc1
8
auto-inhibited conformation
8
dna junction
8
ercc1 hhh
8
hhh domain
8
patient mutations
8
cryo-em structures
4
structures xpf-ercc1
4
xpf-ercc1 endonuclease
4
endonuclease reveal
4

Similar Publications

Article Synopsis
  • * Researchers combined techniques like cryo-electron microscopy (cryo-EM), crosslinking mass spectrometry (XL-MS), and AlphaFold2 predictions to create a model of the NER pre-incision complex (PInC), highlighting how proteins interact during DNA repair.
  • * The study reveals new insights into how specific proteins (like TFIIH, XPG, and XPF) coordinate their actions, affects DNA binding, and provides explanations for disease-causing mutations related to xeroderma pigmentosum and Cockayne syndrome.
View Article and Find Full Text PDF

The Fanconi anemia pathway induces chromothripsis and ecDNA-driven cancer drug resistance.

Cell

October 2024

Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA. Electronic address:

Chromothripsis describes the catastrophic shattering of mis-segregated chromosomes trapped within micronuclei. Although micronuclei accumulate DNA double-strand breaks and replication defects throughout interphase, how chromosomes undergo shattering remains unresolved. Using CRISPR-Cas9 screens, we identify a non-canonical role of the Fanconi anemia (FA) pathway as a driver of chromothripsis.

View Article and Find Full Text PDF
Article Synopsis
  • * XPA is a key protein in NER, involved in later stages of the repair process, and works alongside the FEN1 enzyme, which is essential for completing newly synthesized DNA strands and also plays a role in base excision repair.
  • * Research shows that XPA and FEN1 can form complexes both with and without DNA present, suggesting they interact directly; however, XPA appears to slightly reduce FEN1's activity, indicating a regulatory role in DNA repair processes.
View Article and Find Full Text PDF
Article Synopsis
  • DNA damage in macrophages with a specific DNA repair defect leads to neuroinflammation and neuron death in mouse models.
  • Accumulation of double-stranded DNAs in microglia triggers a viral-like immune response, causing further damage in the aged brain.
  • Delivering a targeted enzyme via extracellular vesicles effectively removes harmful DNAs, reduces inflammation, and slows down neurodegenerative symptoms in mice, suggesting a new treatment strategy.
View Article and Find Full Text PDF

p53 regulates diverse tissue-specific outcomes to endogenous DNA damage in mice.

Nat Commun

March 2024

MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge, UK.

DNA repair deficiency can lead to segmental phenotypes in humans and mice, in which certain tissues lose homeostasis while others remain seemingly unaffected. This may be due to different tissues facing varying levels of damage or having different reliance on specific DNA repair pathways. However, we find that the cellular response to DNA damage determines different tissue-specific outcomes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!