Objective: Vascular calcification is commonly observed in atherosclerosis and diabetes. The renin-angiotensin II system is associated with the regulation of arterial stiffening. The aim of this study was to examine whether the angiotensin-converting enzyme inhibitors captopril attenuates artery calcification.
Methods: The rat model of arterial calcification was established by a combination of warfarin and vitamin K1. Two weeks after the induction of arterial calcification, captopril treatment was initiated. One week after captopril treatment, aortic arteries were examined to determine the calcification morphology and the connexin 43 expression. Matrix Gla protein (MGP), receptor activator of nuclear factor-κB ligand (RANKL) and extracellular regulated protein kinase (ERK) pathways were examined.
Results: The morphology of the calcified arteries was significantly attenuated after captopril treatment. Consistently, captopril inhibited the increased connexin 43 expression and enhanced the decreased MGP expression in calcification arteries. Furthermore, captopril enhanced the decreased SM22 expression in calcified arteries by fluorescence assay. Finally, the calcification arteries increased the p38, p-ERK and RANKL expression, which were downregulated by captopril treatment.
Conclusions: We concluded that captopril attenuated the increased connexin 43 expression and enhanced the MGP and SM22 expression levels, which are associated with the inactivation of p-ERK, p38 and RANKL pathways in rat aortic arteries.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.arcmed.2020.02.002 | DOI Listing |
Adv Sci (Weinh)
December 2024
Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
GJB2 encodes connexin 26 (Cx26), the most commonly mutated gene causing hereditary non-syndromic hearing loss. Cx26 is mainly expressed in supporting cells (SCs) and fibrocytes in the mammalian cochlea. Gene therapy is currently considered the most promising strategy for eradicating genetic diseases.
View Article and Find Full Text PDFMol Cell Biochem
December 2024
Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Henan Xinxiang, 453003, People's Republic of China.
To investigate the promoting effect of extracellular vesicles derived from myocardial cells (CM-EVs) on the reprogramming of cardiac fibroblasts (CFs) into cardiomyocyte-like cells (iCMs) and their therapeutic effect on myocardial infarction (MI) in rats. Cell experiments: The differential adhesion method was used to obtain Sprague Dawley (SD) suckling rat CFs and cardiomyocytes (CMs), while the ultracentrifugation method was used to obtain CM-EVs. Transmission electron microscopy and nanoparticle tracking technology were used to analyze and determine the morphology and particle size of CM-EVs.
View Article and Find Full Text PDFJ Biochem Mol Toxicol
January 2025
Environmental Exposures Vascular Disease Institute, Shanxi Medical University, Taiyuan, Shanxi, China.
Pulmonary hypertension is a progressive disease associated with remodeling of the pulmonary vasculature. Excessive proliferation and migration of pulmonary artery smooth muscle cells (PASMCs) play important roles in nicotine-induced vascular injury. Connexin 43 (Cx43) is involved in intracellular communication and regulation of the pulmonary vasculature.
View Article and Find Full Text PDFMol Med
December 2024
Batiment Recherche, INSERM UMR S1155, Tenon Hospital, 4 rue de la Chine, 75020, Paris, France.
Background: We have previously reported that the gap junction protein connexin 43 (Cx43) was upregulated in chronic renal disease in humans and rodents and plays a crucial role in the progression of experimental nephropathy. In this study, we investigated its role after renal ischemia/reperfusion (rIR), which is a major mechanism of injury in acute renal injury (AKI) and renal transplant graft dysfunction.
Methods: Wild-type mice (WT) and mice in which Cx43 expression was genetically reduced by half (Cx43 ±) were unilaterally nephrectomized.
J Gen Physiol
January 2025
Department of Pharmacology, University of Virginia, School of Medicine, Charlottesville, VA, USA.
Pannexin 1 (PANX1) is a member of a topologically related and stoichiometrically diverse family of large pore membrane ion channels that support the flux of signaling metabolites (e.g., ATP) and fluorescent dyes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!